Polycomb group complexes mediate developmental transitions in plants.

Plant Physiol

Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604.

Published: January 2012

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3252096PMC
http://dx.doi.org/10.1104/pp.111.186445DOI Listing

Publication Analysis

Top Keywords

polycomb group
4
group complexes
4
complexes mediate
4
mediate developmental
4
developmental transitions
4
transitions plants
4
polycomb
1
complexes
1
mediate
1
developmental
1

Similar Publications

Polycomb group (PcG) and Trithorax group (TrxG) complexes represent two major components of the epigenetic machinery. This study aimed to delineate phenotypic similarities and differences across developmental conditions arising from rare variants in PcG and TrxG genes, using data-driven approaches. 462 patients with a PcG or TrxG-associated condition were identified in the DECIPHER dataset.

View Article and Find Full Text PDF

Introduction: This study designed to examine whether social/ environmental experiences can induce the epigenetic modification, and influence the associated physiology and behaviour. To test this, we have used social stress [prenatal stress (PNS)] model and then housed at environmental enrichment (EE) condition to evaluate the interaction between specific epigenetic modification and its influence on behaviour.

Methods: Pregnant rats were randomly divided into a control group, PNS group, and PNS+EE group.

View Article and Find Full Text PDF

Renal medullary carcinoma is a rare undifferentiated tumor of the kidney associated with sickle cell trait and characterized by INI1 (SMARCB1) loss. Although metastasis to lungs, lymph nodes, and bone is commonly reported, distant spread to the central nervous system almost never occurs. Here we present an unusual case of a patient with renal medullary carcinoma with metastasis to the brain following treatment which included tazemetostat, an EZH2 inhibitor.

View Article and Find Full Text PDF

Alternative silencing states of transposable elements in Arabidopsis associated with H3K27me3.

Genome Biol

January 2025

Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Centre National de La Recherche Scientifique (CNRS), Commissariat À L'EnergieAtomique (CEA), Gif-Sur-Yvette, 91190, France.

Background: The DNA/H3K9 methylation and Polycomb-group proteins (PcG)-H3K27me3 silencing pathways have long been considered mutually exclusive and specific to transposable elements (TEs) and genes, respectively in mammals, plants, and fungi. However, H3K27me3 can be recruited to many TEs in the absence of DNA/H3K9 methylation machinery and sometimes also co-occur with DNA methylation.

Results: In this study, we show that TEs can also be solely targeted and silenced by H3K27me3 in wild-type Arabidopsis plants.

View Article and Find Full Text PDF

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!