Preconditioning induces ischemic tolerance, which confers robust protection against ischemic damage. We show marked protection with polyinosinic polycytidylic acid (poly-IC) preconditioning in three models of murine ischemia-reperfusion injury. Poly-IC preconditioning induced protection against ischemia modeled in vitro in brain cortical cells and in vivo in models of brain ischemia and renal ischemia. Further, unlike other Toll-like receptor (TLR) ligands, which generally induce significant inflammatory responses, poly-IC elicits only modest systemic inflammation. Results show that poly-IC is a new powerful prophylactic treatment that offers promise as a clinical therapeutic strategy to minimize damage in patient populations at risk of ischemic injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272611PMC
http://dx.doi.org/10.1038/jcbfm.2011.160DOI Listing

Publication Analysis

Top Keywords

poly-ic preconditioning
12
ischemia-reperfusion injury
8
poly-ic
5
preconditioning protects
4
protects cerebral
4
cerebral renal
4
renal ischemia-reperfusion
4
injury preconditioning
4
preconditioning induces
4
induces ischemic
4

Similar Publications

Background: The therapeutic efficacy of intra-articular mesenchymal stem cells (MSCs) injection for patients with osteoarthritis (OA) currently exhibits inconsistency, and the underlying mechanism remains elusive. It has been postulated that the immunomodulatory properties and paracrine activity of MSCs might be influenced by the inflammatory micro-environment within osteoarthritic joints, potentially contributing to this observed inconsistency.

Methods: Adipose-derived MSCs (ADSCs) were isolated from SD rats and pre-treated with Toll-like receptor 3 (TLR3) agonist Poly I:C or Toll-like receptor 4 (TLR4) agonist LPS.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSC) are envisioned as a potential cellular vehicle for targeted cancer therapies due to their tumor tropism and immune permissiveness. An obstacle in their use is the duality in their interactions within tumors, rendering them pro-tumorigenic or anti-tumorigenic, in a context dependent manner. MSC preconditioning, or priming, has been proposed as a strategy for directing the effector properties of MSC at tumor sites.

View Article and Find Full Text PDF

Background: Mesenchymal stromal cells (MSCs) have regenerative and immunomodulatory properties, making them suitable for cell therapy. Toll-like receptors (TLRs) in MSCs respond to viral load by secreting immunosuppressive or proinflammatory molecules. The expression of anti-inflammatory molecules in MSCs can be altered by the concentration and duration of exposure to the TLR3 ligand polyinosinic-polycytidylic acid (poly(I:C)).

View Article and Find Full Text PDF

Objectives: The B18R protein encoded by the Vaccinia virus decoys Type 1 interferons and inhibits the activity of several type I IFN members. In vitro transcription protocols benefit from this molecule's involvement in enhancing cell viability by inhibiting interferon signal transduction. As a result of their immunomodulatory properties and potential to regenerate, mesenchymal stromal cells (MSCs) are increasingly considered an alternative treatment for a wide range of immune disorders.

View Article and Find Full Text PDF

Spinal cord ischemia (SCI) is a devastating and unpredictable complication of thoracoabdominal aortic repair. Postischemic Toll-like receptor 3 (TLR3) activation through either direct agonists or shock wave therapy (SWT) has been previously shown to ameliorate damage in SCI models. Whether the same applies for pre- or postconditioning remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!