The effects of homocysteine and folic acid on angiogenesis and VEGF expression during chicken vascular development.

Microvasc Res

Erasmus MC, University Medical Center, Department of Obstetrics and Gynecology, Division of Obstetrics and Prenatal Medicine, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands.

Published: March 2012

Homocysteine (Hcy) has been implicated in the development of cardiovascular developmental defects. Additionally, in experimental studies, vasculotoxic properties of Hcy have been described. Although Hcy has been identified as a vascular pathogen, little is known about the direct effects Hcy exerts during early embryonic vascular development. Angiogenesis is a critical process involved in embryo survival and development. There are limited studies on the effects of Hcy on early embryonic vasculogenesis and angiogenesis. Folic acid (FA) is a B vitamin essential in embryo development, and FA supplementation may lead to reduced Hcy levels. Therefore, the purpose of our study was to explore the effects of Hcy and FA on early embryonic vascular development. Embryonic day (E) 3.5 chicken embryos were treated with a sham, Hcy or FA solution. We developed a computational program for systematic analysis of microscopic images obtained from the extra embryonic vascular beds. These results were combined with real-time PCR data on the expression of VEGF-A and its receptor in these vascular beds. Our data show that Hcy exposure inhibits early vascular development, displayed by a significant reduction of vessel area and altered composition of the vascular beds. Vascular beds of Hcy embryos for the greater part consisted of vessels of the smallest diameters, compared to middle size vessels in control and FA embryos. Hcy also reduced expression of VEGF-A and VEGFR-2. No significant effects of FA were found. We conclude that Hcy exposure causes impaired early extra embryonic vascular development, shown by altered composition of the vascular beds as well as reduced expression of VEGF-A and VEGFR-2. These effects of Hcy, and the consecutive cascade of events, may be involved in the development of cardiovascular developmental defects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mvr.2011.11.001DOI Listing

Publication Analysis

Top Keywords

vascular development
20
vascular beds
20
effects hcy
16
embryonic vascular
16
hcy
13
early embryonic
12
expression vegf-a
12
vascular
11
development
9
folic acid
8

Similar Publications

Endothelial cell (EC)-specific CTGF/CCN2 Expression Increases EC Reprogramming and Atherosclerosis.

Matrix Biol

January 2025

Department of Surgery, Emory University, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Research Services, Atlanta VA Medical Center, Decatur, GA, USA. Electronic address:

Arterial endothelial cells (ECs) reside in a complex biomechanical environment. ECs sense and respond to wall shear stress. Low and oscillatory wall shear stress is characteristic of disturbed flow and commonly found at arterial bifurcations and around atherosclerotic plaques.

View Article and Find Full Text PDF

Comment on: Subretinal Gene Therapy for Treatment of Retinal and Choroidal Vascular Diseases.

Am J Ophthalmol

January 2025

PharmaLogic Development, Inc., San Rafael CA; Department of Ophthalmology & Vision Science, University of California, Davis, School of Medicine. Electronic address:

View Article and Find Full Text PDF

Background: Individuals with spinal cord injury (SCI) commonly have autonomic dysreflexia (AD) with increased sympathetic activity. After SCI, individuals have decreased baroreflex sensitivity and increased vascular responsiveness.

Objective: To evaluate the relationship between baroreflex and blood vessel sensitivity with AD symptoms.

View Article and Find Full Text PDF

Background: Although conventional pre-operative venography can accurately delineate venous anatomy as an alternative to ultrasound for hemodialysis access planning, it may carry a risk of contrast-induced acute kidney injury (AKI) and progression of renal failure in chronic kidney disease (CKD) patients not yet on dialysis. Therefore, the objective of this study was to evaluate the safety and efficacy of pre-operative venograms in pre-end-stage kidney disease (ESKD) patients.

Methods: We performed a retrospective cohort study (2018-2022) of consecutive pre-ESKD patients who underwent staged bilateral venograms for preoperative vein mapping prior to hemodialysis access creation at a tertiary care medical center.

View Article and Find Full Text PDF

Background: Extracorporeal membrane oxygenation (ECMO) is a critical treatment for severe cardiopulmonary failure. However, traditional ECMO decannulation methods, such as manual compression and surgical repair, are associated with significant complications. This study evaluates suture-mediated closure devices, specifically Perclose ProGlide, as a potentially favorable decannulation strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!