We previously reported that the combinatorial use of T20 and T1144, the first and next generations of HIV fusion inhibitors, containing different functional domains resulted in synergistic anti-HIV-1 effect, but this effect diminished when T20 and T1144 were covalently linked together. To elucidate the mechanism underlying this synergistic anti-HIV-1 effect, we studied the interactions between T20 and T1144 either in a mixture state or in a covalently linked state. T20 alone in solution was largely featureless, while T1144 alone was in α-helical trimeric conformation. When mixed in solution, T20 and T1144 showed a loose and transient interaction, with a moderate 10% α-helical content increase, but this interaction was greatly enhanced in the linked state, and T20 and T1144 showed ∼100% α-helical content. These results suggested that the loose and transient interaction between T20 and T1144 may destabilize the T1144 trimer, which makes its otherwise shielded binding sites more accessible to N-terminal heptad repeat (NHR) and increases its associating rate, thus increasing its anti-HIV-1 potency against the temporarily exposed target in NHR and causing the synergistic anti-HIV-1 effect. However, the strong interaction between T20 and T1144 in the covalently linked state may shield their NHR-binding sites, resulting in reduction of the synergistic effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289504 | PMC |
http://dx.doi.org/10.1096/fj.11-195289 | DOI Listing |
AIDS
August 2019
Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
Objective: To revisit the mechanism of action of enfuvirtide (T20) and based on the newly defined mechanism, design an analogous peptide of T20 with improved antiviral activity.
Design: We compared the inhibitory activity of T20 with that of T1144 on six-helix bundle (6HB) formation at different time after coculture of HIV type 1 (HIV-1) envelope (Env)-expressing Chinese hamster ovary (CHO-Env) cells and CD4-expressing MT-2 cells at 31.5 °C and with that of T20-SF, an analogous peptide of T20 with an additional tryptophan-rich motif, on hemolysis mediated by FP-P, which contains fusion peptide and fusion peptide (FP) proximal region (FPPR), and HIV-1 infection.
AIDS
March 2016
aKey Laboratory of Medical Molecular Virology of Ministries of Education and Health, Basic Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, ChinabLindsley F. Kimball Research Institute, New York Blood Center, New York, USAcBeijing Institute of Pharmacology and Toxicology, BeijingdShanghai Institute of Planned Parenthood Research, Shanghai, China.*Lu Lu and Shibo Jiang contributed equally to this work.
Objectives: Traditionally, the antiviral efficacy of classic cocktail therapy is significantly limited by the distinct pharmacokinetic profiles of partner therapeutics that lead to inconsistent in-vivo biodistribution. Here we developed a new cocktail-like drug delivery vehicle using biodegradable polymeric nanoparticles (NP) encapsulating nonnucleoside reverse transcriptase inhibitor (NNRTI) DAAN-14f (14f), surface-conjugated with HIV-1 fusion inhibitor T1144, designated T1144-NP-DAAN-14f (T1144-NP-14f), and aiming to achieve enhanced cellular uptake, improved antiviral activity and prolonged blood circulation time.
Methods: T1144-NP-14f was prepared through the emulsion/solvent evaporation technique and a maleimide-thiol coupling reaction.
FASEB J
March 2012
Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
We previously reported that the combinatorial use of T20 and T1144, the first and next generations of HIV fusion inhibitors, containing different functional domains resulted in synergistic anti-HIV-1 effect, but this effect diminished when T20 and T1144 were covalently linked together. To elucidate the mechanism underlying this synergistic anti-HIV-1 effect, we studied the interactions between T20 and T1144 either in a mixture state or in a covalently linked state. T20 alone in solution was largely featureless, while T1144 alone was in α-helical trimeric conformation.
View Article and Find Full Text PDFJ Biol Chem
August 2011
Lindsley F Kimball Research Institute, New York Blood Center, New York, New York 10065, USA.
T20 (enfuvirtide, Fuzeon) is the first generation HIV-1 fusion inhibitor approved for salvage therapy of HIV-1-infected patients refractory to current antiretroviral drugs. However, its application is limited by the high cost of peptide synthesis, rapid proteolysis, and poor efficacy against emerging drug-resistant strains. Here we reported the design of a novel chimera protein-based fusion inhibitor targeting gp41, TLT35, that uses a flexible 35-mer linker to couple T20 and T1144, the first and next generation HIV-1 fusion inhibitors, respectively.
View Article and Find Full Text PDFT20 (generic name, enfuvirtide; brand name, Fuzeon) is a first-generation human immunodeficiency virus (HIV) fusion inhibitor approved for salvage therapy of HIV-infected patients refractory to current antiretroviral drugs. However, its clinical use is limited because of rapid emergence of T20-resistant viruses in T20-treated patients. Therefore, T1249 and T1144 are being developed as the second- and third-generation HIV fusion inhibitors, respectively, with improved efficacy and drug resistance profiles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!