A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bonding in ammonia borane: an analysis based on the natural orbitals for chemical valence and the extended transition state method (ETS-NOCV). | LitMetric

Bonding in ammonia borane: an analysis based on the natural orbitals for chemical valence and the extended transition state method (ETS-NOCV).

J Phys Chem A

Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, R. Ingardena 3, 30-060 Cracow, Poland.

Published: December 2011

In the present study the natural orbitals for chemical valence (NOCVs) combined with the energy decomposition scheme (ETS) were used to characterize bonding in various clusters of ammonia borane (borazane): dimer D, trimer TR, tetramer TE, and the crystal based models: nonamer N and tetrakaidecamer TD. ETS-NOCV results have shown that shortening of the B-N bond (by ~0.1 Å) in ammonia borane crystal (as compared to isolated borazane molecule) is related to the enhancement of donation (by 6.5 kcal/mol) and electrostatic (by 11.3 kcal/mol) contributions. This, in turn, is caused solely by the electrostatic dipole-dipole interaction between ammonia borane units; dihydrogen bonding, BH···HN, formed between borazane units exhibits no direct impact on B-N bond contraction. On the other hand, formation of dihydrogen bonding appeared to be very important in the total stabilization of single borazane unit, namely, ETS-based data indicated that it leads to significant electronic stabilization ΔE(orb) = -17.5 kcal/mol, which is only slightly less important than the electrostatic term, ΔE(elstat) = -19.4 kcal/mol. Thus, both factors contribute to relatively high melting point of the borazane crystal. Deformation density contributions (Δρ(i)) obtained from NOCVs allowed to conclude that dihydrogen bonding is primarily based on outflow of electron density from B-H bonding orbitals to the empty σ*(N-H) (charge transfer component). Equally important is the covalent contribution resulting from the shift of the electron density from hydrogen atoms of both NH and BH groups to the interatomic regions of NH···HB. Quantitatively, averaged electronic strength of dihydrogen bond per one BH···HN link varies from 1.95 kcal/mol (for the crystal structure model, N), 2.47 kcal/mol (for trimer TR), through 2.65 kcal/mol (for tetramer TE), up to 3.95 kcal/mol (for dimer D).

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp209712sDOI Listing

Publication Analysis

Top Keywords

ammonia borane
16
dihydrogen bonding
12
natural orbitals
8
orbitals chemical
8
chemical valence
8
b-n bond
8
kcal/mol
8
kcal/mol electrostatic
8
electron density
8
bonding
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!