Stereoselective vinylation of aryl N-(2-pyridylsulfonyl) aldimines with 1-alkenyl-1,1-heterobimetallic reagents.

Org Lett

P. Roy and Diana T. Vagelos Laboratories, University of Pennsylvania, Department of Chemistry, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA.

Published: December 2011

Vinylation of aryl N-(2-pyridylsulfonyl) aldimines with versatile 1-alkenyl-1,1-borozinc heterobimetallic reagents is disclosed. In situ hydroboration of air-stable B(pin)-alkynes followed by chemoselective transmetalation with dimethylzinc and addition to aldimines provides B(pin)-substituted allylic amines in 53-93% yield in a one-pot procedure. The addition step can be followed by either B-C bond oxidation to provide α-amino ketones (71-98% yield) or Suzuki cross-coupling to furnish trisubstituted 2-arylated (E)-allylic amines (51-73% yield).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3237811PMC
http://dx.doi.org/10.1021/ol202766gDOI Listing

Publication Analysis

Top Keywords

vinylation aryl
8
aryl n-2-pyridylsulfonyl
8
n-2-pyridylsulfonyl aldimines
8
stereoselective vinylation
4
aldimines 1-alkenyl-11-heterobimetallic
4
1-alkenyl-11-heterobimetallic reagents
4
reagents vinylation
4
aldimines versatile
4
versatile 1-alkenyl-11-borozinc
4
1-alkenyl-11-borozinc heterobimetallic
4

Similar Publications

Herein we report a cobalt-catalyzed hydroglycosylation of terminal alkynes, employing bench-stable ortho-iodobiphenyl (oIB) substituted sulfides as glycosyl donors. This reaction occurs with high stereo- and regioselectivity to afford E-configured vinyl α-C-glycosides, a class of compounds nontrivial to access by previous methods. The use of a bis(oxazoline) ligand with bulky side chains is critical for the high selectivities observed.

View Article and Find Full Text PDF
Article Synopsis
  • The hydrofluorination of enynoates allows for the efficient synthesis of fluorinated dienoates using a pyridinium tetrafluoroborate salt.
  • This method effectively converts various aryl-substituted enynoates into the desired fluorinated products with significant control over their stereochemistry and regioselectivity.
  • Mechanistic studies were performed to understand the reaction process better and to optimize the outcomes based on different reaction conditions.
View Article and Find Full Text PDF

Copper-Catalyzed Intermolecular [2 + 2 + 2] Annulation of Diynes with Alkynes: Construction of Carbazoles.

Org Lett

January 2025

Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Transition-metal-catalyzed [2 + 2 + 2] annulation of alkynes is an efficient pathway for the synthesis of aromatic compounds. However, most of the established methods require noble metal catalysts. Herein, we report a copper-catalyzed intermolecular [2 + 2 + 2] annulation of diynes with alkynes through vinyl cation intermediates, enabling the atom-economical preparation of biologically important carbazole skeletons.

View Article and Find Full Text PDF

Benzothiazolium salts as versatile primary alcohol derivatives in Ni-catalyzed cross-electrophile arylation/vinylation.

Org Biomol Chem

January 2025

Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.

Herein, we report a Ni-catalyzed cross-electrophile coupling of aryl/vinyl halides with benzothiazolium salts derived from alcohols. Our findings demonstrate that primary alkyl benzothiazolium salts serve as effective C(sp)-O substrates, facilitating coupling with aryl and vinyl halides. This method not only enables the formal functionalization of primary alcohols but also provides experimental support for previously established sequential alcohol halogenation and Ni-catalyzed reductive coupling platforms.

View Article and Find Full Text PDF

In this study, we present a novel catalyst-free energy transfer mediated radical rearrangement strategy for the aryl-heterofunctionalization of unactivated alkynes, leading to the synthesis of polyfunctional olefins with exceptional stereoselectivity. This innovative approach, driven by visible light, exemplifies green chemistry principles by eliminating the reliance on transition metals, external oxidants, and photocatalysts. The broad applicability of our method is demonstrated through the successful synthesis of a diverse array of compounds, including vinyl sulfones, vinyl selenides, and vinyl sulfides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!