Wide-SIMD hardware is power and area efficient, but it is challenging to efficiently map ray tracing algorithms to such hardware especially when the rays are incoherent. The two most commonly used schemes are either packet tracing, or relying on a separate traversal stack for each SIMD lane. Both work great for coherent rays, but suffer when rays are incoherent: The former experiences a dramatic loss of SIMD utilization once rays diverge; the latter requires a large local storage, and generates multiple incoherent streams of memory accesses that present challenges for the memory system. In this paper, we introduce a single-ray tracing scheme for incoherent rays that uses just one traversal stack on 16-wide SIMD hardware. It uses a bounding-volume hierarchy with a branching factor of four as the acceleration structure, exploits four-wide SIMD in each box and primitive intersection test, and uses 16-wide SIMD by always performing four such node or primitive tests in parallel. We then extend this scheme to a hybrid tracing scheme that automatically adapts to varying ray coherence by starting out with a 16-wide packet scheme and switching to the new single-ray scheme as soon as rays diverge. We show that on the Intel Many Integrated Core architecture this hybrid scheme consistently, and over a wide range of scenes and ray distributions, outperforms both packet and single-ray tracing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2011.277 | DOI Listing |
ACS EST Air
January 2025
Lyles School of Civil & Construction Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
Commercial HVAC systems intended to mitigate indoor air pollution are operated based on standards that exclude aerosols with smaller diameters, such as ultrafine particles (UFPs, D ≤ 100 nm), which dominate a large proportion of indoor and outdoor number-based particle size distributions. UFPs generated from occupant activities or infiltrating from the outdoors can be recirculated and accumulate indoors when they are not successfully filtered by an air handling unit. Monitoring UFPs in real occupied environments is vital to understanding these source and mitigation dynamics, but capturing their rapid transience across multiple locations can be challenging due to high-cost instrumentation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
South China Normal University, Chemistry, 55 W Zhongshan Rd, 510006, Guangzhou, CHINA.
Lithium-sulfur (Li-S) batteries has been regarded as one of the most promising next-generation energy storage systems due to their high theoretical energy density. However, the practical application of Li-S batteries is still hindered by the unstable cathode-electrolyte interphase and the early passivation of charge product (Li2S), leading to poor cycling stability and low S utilization. Herein, we propose an electrolyte engineering strategy using highly solvating hexamethylphosphoramide (HMPA) as a co-solvent to elucidate the dissociation-precipitation chemistry of lithium polysulfides (LiPSs).
View Article and Find Full Text PDFJ Morphol
January 2025
Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
Although numerous studies have addressed some aspects of the cranial osteology of Nearctic dipsadid species, only the species within the genera Heterodon and Carphophis have a formal published description of their skull. Similarly, vertebral data on such species are extremely scarce, and most of the available literature is focused on fossils. Such group has a complex phylogenetic history, being recovered as monophyletic or nonmonophyletic depending on the approach.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Physics, Tamkang University, Tamsui, 25137, Taiwan.
This investigation explores the potential of co-incorporating nickel (Ni) and cobalt (Co) into copper oxide (CuO) nanostructures for bifunctional electrochemical charge storage and oxygen evolution reactions (OER). A facile wet chemical synthesis method is employed to co-incorporate Ni and Co into CuO, yielding diverse nanostructured morphologies, including rods, spheres, and flake. The X-ray diffraction (XRD) and Raman analyses confirmed the formation of NiCo-CuO nanostructure, with minor phases of nickel oxide (NiO) and cobalt tetraoxide (CoO).
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Neurological Sciences, Christian Medical College Vellore- Ranipet Campus Vellore, Vellore, Tamil Nadu, 632517, India.
To describe the distribution of jugular bulb position and pneumatization of posterior lip of internal auditory meatus (IAM) in patients with vestibular schwannoma (VS). This retrospective study included 43 patients who had a thin slice (< 2 mm) CT temporal bone for preoperative planning of retrosigmoid approach for excision of VS between March 2011 and March 2021. On computed tomography (CT), high riding jugular bulb was defined by its relationship to IAM and correlated with type of jugular bulb according to Manjila et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!