Alternative splicing is critical for diversifying eukaryotic proteomes, but the rules governing and coordinating splicing events among multiple alternate splice sites within individual genes are not well understood. We developed a quantitative PCR-based strategy to quantify the expression of the 12 transcripts encoded by the Caenorhabditis elegans slo-1 gene, containing three alternate splice sites. Using conditional probability-based models, we show that splicing events are coordinated across these sites. Further, we identify a point mutation in an intron adjacent to one alternate splice site that disrupts alternative splicing at all three sites. This mutation leads to aberrant synaptic transmission at the neuromuscular junction. In a genomic survey, we found that a UAAAUC element disrupted by this mutation is enriched in introns flanking alternate exons in genes with multiple alternate splice sites. These results establish that proper coordination of intragenic alternative splicing is essential for normal physiology of slo-1 in vivo and identify putative specialized cis-regulatory elements that regulate the coordination of intragenic alternative splicing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3251113 | PMC |
http://dx.doi.org/10.1073/pnas.1116712108 | DOI Listing |
J Exp Clin Cancer Res
January 2025
Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.
Background: Emerging evidence shows that small nucleolar RNA (snoRNA), a type of highly conserved non-coding RNA, is involved in tumorigenesis and aggressiveness. However, the roles of snoRNAs in regulating alternative splicing crucial for cancer progression remain elusive.
Methods: High-throughput RNA sequencing and comprehensive analysis were performed to identify crucial snoRNAs and downstream alternative splicing events.
Free Radic Biol Med
January 2025
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College,Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin 301617, China. Electronic address:
U2AF1 is a core component of spliceosome and controls cell-fate specific alternative splicing. U2AF1 mutations have been frequently identified in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) patients, and mutations in U2AF1 are associated with poor prognosis in hematopoietic malignant diseases. Here, by forced expression of mutant U2AF1 (U2AF1 S34F) in hematopoietic and leukemic cell lines, we find that U2AF1 S34F causes increased reactive oxygen species (ROS) production.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
January 2025
College of Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China. Electronic address:
Glutathione S-transferase (GST) plays a critical role in detoxifying various chemical compounds and is essential for host adaptation and pesticide resistance in insects. To understand the genetic structure of the GST family and the expression patterns among three haplotypes of Aphis gossypii, we conducted studies using genome annotation files and RNA-seq data. We identified 11 GSTs in A.
View Article and Find Full Text PDFiScience
January 2025
Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain.
Alternative splicing is a post-transcriptional process resulting in multiple protein isoforms from a single gene. Abnormal splicing may lead to metabolic diseases, including type 2 diabetes mellitus (T2DM). To identify the splicing factor expression that predicts T2DM remission in coronary heart disease (CHD) patients, we identified newly diagnosed T2DM at baseline ( = 190) from the CORDIOPREV study.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P.R. China.
Alternative splicing (AS) plays a critical role in gene expression by generating protein diversity from single genes. This review provides an overview of the role of AS in regulating cell fate, focusing on its involvement in processes such as cell proliferation, differentiation, apoptosis, and tumorigenesis. We explore how AS influences the cell cycle, particularly its impact on key stages like G1, S, and G2/M.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!