Exposure of Escherichia coli to UV light increases expression of NrdAB, the major ribonucleotide reductase leading to a moderate increase in dNTP levels. The role of elevated dNTP levels during translesion synthesis (TLS) across specific replication-blocking lesions was investigated. Here we show that although the specialized DNA polymerase PolV is necessary for replication across UV-lesions, such as cyclobutane pyrimidine dimers or pyrimidine(6-4)pyrimidone photoproduct, Pol V per se is not sufficient. Indeed, efficient TLS additionally requires elevated dNTP levels. Similarly, for the bypass of an N-2-acetylaminofluorene-guanine adduct that requires Pol II instead of PolV, efficient TLS is only observed under conditions of high dNTP levels. We suggest that increased dNTP levels transiently modify the activity balance of Pol III (i.e., increasing the polymerase and reducing the proofreading functions). Indeed, we show that the stimulation of TLS by elevated dNTP levels can be mimicked by genetic inactivation of the proofreading function (mutD5 allele). We also show that spontaneous mutagenesis increases proportionally to dNTP pool levels, thus defining a unique spontaneous mutator phenotype. The so-called "dNTP mutator" phenotype does not depend upon any of the specialized DNA polymerases, and is thus likely to reflect an increase in Pol III's own replication errors because of the modified activity balance of Pol III. As up-regulation of the dNTP pool size represents a common physiological response to DNA damage, the present model is likely to represent a general and unique paradigm for TLS pathways in many organisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3228436PMC
http://dx.doi.org/10.1073/pnas.1113664108DOI Listing

Publication Analysis

Top Keywords

dntp levels
24
dntp pool
12
elevated dntp
12
increase dntp
8
pool size
8
dna damage
8
escherichia coli
8
dntp
8
specialized dna
8
efficient tls
8

Similar Publications

SAMHD1 enhances HIV-1-induced apoptosis in monocytic cells via the mitochondrial pathway.

bioRxiv

January 2025

Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.

Sterile alpha motif (SAM) and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) inhibits HIV-1 replication in non-dividing cells by reducing the intracellular dNTP pool. SAMHD1 enhances spontaneous apoptosis in cells, but its effects on HIV-1-induced apoptosis and the underlying mechanisms remain unknown. Here we uncover a new mechanism by which SAMHD1 enhances HIV-1-induced apoptosis in monocytic cells through the mitochondrial pathway.

View Article and Find Full Text PDF

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a dNTP hydrolase important for intracellular dNTP homeostasis and serves as tumor suppressor and modulator of antimetabolite efficacy in cancer, though largely unexplored in breast cancer (BC). A cohort of patients with early BC (n = 564) with available gene expression data (GEP) was used. SAMHD1 protein expression was assessed by immunohistochemistry performed on tissue microarrays.

View Article and Find Full Text PDF

Tuberculosis (TB) presents significant medical challenges, largely due to the genetic diversity of , which enhances the resilience and resistance of the pathogen to first-line treatments. In response to the global rise of drug-resistant TB, second-line antitubercular drugs like bedaquiline (BDQ), linezolid (LZD), and clofazimine (CFZ) have become critical treatment options. Understanding the molecular changes these drugs induce is essential for optimizing TB therapy.

View Article and Find Full Text PDF

Unveiling the Connection: Viral Infections and Genes in dNTP Metabolism.

Viruses

September 2024

Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.

Article Synopsis
  • dNTPs are super important for making sure DNA gets copied and stays healthy in cells.
  • Different enzymes like DHFR, RNR, and SAMHD1 help manage the amounts of dNTPs in the cell to make sure everything runs smoothly.
  • The balance of dNTPs can even affect how viruses interact with our cells and the genes that help break down these building blocks.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that the amount of special molecules called dNTPs in cells is controlled based on what stage the cell is in.
  • They discovered that changing certain parts of a virus enzyme can make a tool used for gene editing work better.
  • By combining these changes and having more dNTPs, they were able to make gene editing much more accurate!
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!