A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nitrosyl hydride (HNO) replaces dioxygen in nitroxygenase activity of manganese quercetin dioxygenase. | LitMetric

Quercetin dioxygenase (QDO) catalyzes the oxidation of the flavonol quercetin with dioxygen, cleaving the central heterocyclic ring and releasing CO. The QDO from Bacillus subtilis is unusual in that it has been shown to be active with several divalent metal cofactors such as Fe, Mn, and Co. Previous comparison of the catalytic activities suggest that Mn(II) is the preferred cofactor for this enzyme. We herein report the unprecedented substitution of nitrosyl hydride (HNO) for dioxygen in the activity of Mn-QDO, resulting in the incorporation of both N and O atoms into the product. Turnover is demonstrated by consumption of quercetin and other related substrates under anaerobic conditions in the presence of HNO-releasing compounds and the enzyme. As with dioxygenase activity, a nonenzymatic base-catalyzed reaction of quercetin with HNO is observed above pH 7, but no enhancement of this basal reactivity is found upon addition of divalent metal salts. Unique and regioselective N-containing products ((14)N/(15)N) have been characterized by MS analysis for both the enzymatic and nonenzymatic reactions. Of the several metallo-QDO enzymes examined for nitroxygenase activity under anaerobic condition, only the Mn(II) is active; the Fe(II) and Co(II) substituted enzymes show little or no activity. This result represents an enzymatic catalysis which we denote nitroxygenase activity; the unique reactivity of the Mn-QDO suggests a metal-mediated electron transfer mechanism rather than metal activation of the substrate's inherent base-catalyzed reactivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3223434PMC
http://dx.doi.org/10.1073/pnas.1111488108DOI Listing

Publication Analysis

Top Keywords

nitroxygenase activity
12
nitrosyl hydride
8
hydride hno
8
quercetin dioxygenase
8
divalent metal
8
activity
6
quercetin
5
hno replaces
4
replaces dioxygen
4
dioxygen nitroxygenase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!