Twenty-seven Ocimum basilicum cultivars were subjected to a chemical characterization of essential oil components by gas chromatography/mass spectrometry (GC/MS) and a genetic characterization using the amplified fragment-length polymorphism (AFLP) technique. Since the same 27 accessions had previously been classified into six morphotypes, these analyses allowed us to make detailed comparisons of chemistry, genetics, and morphology. The chemical composition and morphology of the studied cultivars appeared to have a strong genetic component. The AFLP analysis revealed a distinction between the green and purple morphotypes. The green morphotypes predominantly utilized the terpene biosynthetic pathway, while most purple morphotypes primarily utilized the phenylpropene biosynthetic pathway. The GC/MS analysis led to identification of 87 volatiles. Among the 27 cultivars, five chemotypes were identified. A detailed characterization of the essential oil constituents indicated the existence of both specific combinations of compounds and 'private' compounds with the potential to be used in many aspects of human life. The established relationship between a genetic profile, chemical composition, and morphology represents an important step in future breeding programs and in the cultivation of this species.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.201100039DOI Listing

Publication Analysis

Top Keywords

chemical characterization
8
ocimum basilicum
8
basilicum cultivars
8
characterization essential
8
essential oil
8
chemical composition
8
composition morphology
8
purple morphotypes
8
morphotypes utilized
8
biosynthetic pathway
8

Similar Publications

A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.

View Article and Find Full Text PDF

Leishmania mexicana N-Acetyltransferease 10 Is Important for Polysome Formation and Cell Cycle Progression.

Mol Microbiol

January 2025

Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil.

Leishmania presents a complex life cycle that involves both invertebrate and vertebrate hosts. By regulating gene expression, protein synthesis, and metabolism, the parasite can adapt to various environmental conditions. This regulation occurs mainly at the post-transcriptional level and may involve epitranscriptomic modifications of RNAs.

View Article and Find Full Text PDF

Migrasome formation is initiated preferentially in tubular junctions by membrane tension.

Biophys J

January 2025

Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel. Electronic address:

Migrasomes, the vesicle-like membrane micro-structures, arise on the retraction fibers (RFs), the branched nano-tubules pulled out of cell plasma membranes during cell migration and shaped by membrane tension. Migrasomes form in two steps: a local RF bulging is followed by a protein-dependent stabilization of the emerging spherical bulge. Here we addressed theoretically and experimentally the previously unexplored mechanism of bulging of membrane tubular systems.

View Article and Find Full Text PDF

Powder X-ray diffraction (PXRD) is a prevalent technique in materials characterization. While the analysis of PXRD often requires extensive human manual intervention, and most automated method only achieved at coarse-grained level. The more difficult and important task of fine-grained crystal structure prediction from PXRD remains unaddressed.

View Article and Find Full Text PDF

We have developed a novel S-scheme mechanism to expand the photoresponse range of BiSiO. This study reports the successful creation of a CN/BS heterojunction photocatalyst, which is composed of g-CN and BiSiO. The synthesis was achieved through a simple two-step procedure, involving hydrothermal treatment and subsequent calcination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!