Many growth factors, leukotrines, and biological ligands are not circulating free in plasma or serum, except in the case of late or disseminated disease. During early tumor growth and angiogenesis, platelets actively and selectively sequester regulators of angiogenesis and, as such, the platelet protein content can be used as a marker of early tumor growth or angiogenesis. With the recent increase in the clinical use of biologic modifiers in cancer and chronic disease therapy, the search for markers of early disease, therapeutic response, and/or recurrence has suggested that analysis of platelet proteins may be more relevant and accurate. We provide a guideline for the proteomic analysis of platelet proteome, placing specific emphasis on angiogenesis regulators, even though other platelet proteins may serve as markers of disease in the future. The analysis of serum/plasma has been fraught with difficulties because of the extraordinarily large number of proteins and because some of the proteins are contained in extraordinarily large amounts, masking the less abundant proteins. Thus, platelets may provide a much more biologically relevant analyte for biomarker discovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472376 | PMC |
http://dx.doi.org/10.1007/978-1-61779-418-6_12 | DOI Listing |
Brief Bioinform
November 2024
Guangdong Provincial Key Laboratory of Mathematical and Neural Dynamical Systems, Great Bay University, No. 16 Daxue Rd, Songshanhu District, Dongguan, Guangdong, 523000, China.
Multimodal omics provide deeper insight into the biological processes and cellular functions, especially transcriptomics and proteomics. Computational methods have been proposed for the integration of single-cell multimodal omics of transcriptomics and proteomics. However, existing methods primarily concentrate on the alignment of different omics, overlooking the unique information inherent in each omics type.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
Rationale: Acute kidney injury (AKI) is a clinical syndrome associated with a multitude of conditions. Although renal replacement therapy (RRT) remains the cornerstone of treatment for advanced AKI, its implementation can potentially pose risks and may not be readily accessible across all healthcare settings and regions. Elevated lactate levels are implicated in sepsis-induced AKI; however, it remains unclear whether increased lactate directly induces AKI or elucidates the underlying mechanisms.
View Article and Find Full Text PDFJ Diabetes Metab Disord
June 2025
Department of Peripheral Vascular Diseases, First Affiliated Hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, China.
Objective: The escalating prevalence of Type-2 diabetes mellitus (T2DM) poses a significant global health challenge. Utilizing integrative proteomic analysis, this study aimed to identify a panel of potential protein markers for T2DM, enhancing diagnostic accuracy and paving the way for personalized treatment strategies.
Methods: Proteome profiles from two independent cohorts were integrated: cohort 1 composed of 10 T2DM patients and 10 healthy controls (HC), and cohort 2 comprising 87 T2DM patients and 60 healthy controls.
J Microbiol Biotechnol
December 2024
College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea.
Extracellular vesicles (EVs) have garnered attention in research for their potential as biochemical transporters and immune modulators, crucial for regulating the host immune system. The present study was conducted to isolate and characterize EVs from Gram negative bacteria (EVs) and investigate their proteomic profile and immune responses. Isolation of EVs was carried out using ultracentrifugation method.
View Article and Find Full Text PDFExpert Rev Proteomics
January 2025
Biozentrum University of Basel, Basel, Switzerland.
Introduction: Recent work identified members of the evolutionarily conserved coronin protein family as key regulators of cell population size. This work originated ~25 years ago through the identification, by two-dimensional gel electrophoresis, of coronin 1 as a host protein involved in the virulence of Mycobacterium tuberculosis. We here describe the journey from a spot on a 2D gel to the recent realization that coronin proteins represent key controllers of eukaryotic cell population sizes, using ever more sophisticated proteomic techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!