Anxiogenic-like effects of chronic cannabidiol administration in rats.

Psychopharmacology (Berl)

School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK.

Published: May 2012

AI Article Synopsis

  • Pre-clinical and human studies suggest that short-term use of cannabidiol (CBD) can help reduce anxiety symptoms.
  • This study examined the effects of long-term CBD administration on rat behavior and brain protein levels, focusing on specific proteins linked to anxiety and depression.
  • Results showed that chronic CBD use increased anxiety-like behavior in rats and decreased levels of important brain proteins associated with mental health, contradicting the expected anxiety-reducing effects of CBD.

Article Abstract

Rationale: Several pre-clinical and human-based studies have shown that acutely administered cannabidiol (CBD) can produce anxiolytic-like effects

Objectives: The present study investigated the effects of chronic administration of CBD on rat behaviour and on the expression of brain proteins.

Methods: Male Lister-hooded rats (150-200 g, n = 8 per group) received daily injections of CBD (10 mg/kg, i.p.) for 14 days. The rats were subjected to two behavioural tests: locomotor activity and conditioned emotional response (CER). The expression of brain-derived neurotrophic factor (BDNF), its receptor tyrosine kinase B (Trk B), extracellular signal-regulated kinases (ERK1/2) and phospho-ERK1/2 and the transcription factor cyclic AMP response element binding protein activation (CREB) and phospho-CREB were determined in brain regions such as the frontal cortex and hippocampus using Western immunoblotting.

Results: CBD significantly increased the time spent freezing in the CER test with no effect on locomotor activity. CBD significantly reduced BDNF expression in the hippocampus and frontal cortex with no change in the striatum. In addition, CBD significantly reduced TrkB expression in the hippocampus with a strong trend towards reduction in the striatum but had no effect in the frontal cortex. In the hippocampus, CBD had no effect on ERK1/2 or phospho-ERK2, but in the frontal cortex, CBD significantly reduced phospho-ERK1/2 expression without affecting total ERK.

Conclusion: Chronic administration of CBD produced an anxiogenic-like effect in clear opposition to the acute anxiolytic profile previously reported. In addition, CBD decreased the expression of proteins that have been shown to be enhanced by chronic treatment with antidepressant/anxiolytic drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00213-011-2566-zDOI Listing

Publication Analysis

Top Keywords

frontal cortex
16
cbd reduced
12
cbd
10
effects chronic
8
chronic administration
8
administration cbd
8
locomotor activity
8
cortex hippocampus
8
expression hippocampus
8
addition cbd
8

Similar Publications

Objective: This study aims to observe the effect of enrichment rehabilitation (ER) on cognitive function in post-stroke patients and to clarify its underlying mechanism.

Methods: Forty patients with post-stroke cognitive impairment (PSCI) meeting the inclusion criteria were randomly assigned to two groups: conventional medical rehabilitation (CM group) and ER intervention (ER group). All patients underwent assessments of overall cognitive function, attention function, and executive function within 24 h before the start of training and within 24 h after the 8 weeks of training.

View Article and Find Full Text PDF

Previous research has revealed patterns of brain atrophy in subjective cognitive decline, a potential preclinical stage of Alzheimer's disease. However, the involvement of myelin content and microstructural alterations in subjective cognitive decline has not previously been investigated. This study included three groups of participants recruited from the Compostela Aging Study project: 53 cognitively unimpaired adults, 16 individuals with subjective cognitive decline and hippocampal atrophy and 70 with subjective cognitive decline and no hippocampal atrophy.

View Article and Find Full Text PDF

Background: The perception of Subjective Visual Vertical (SVV) is crucial for postural orientation and significantly reflects an individual's postural control ability, relying on vestibular, visual, and somatic sensory inputs to assess the Earth's gravity line. The neural mechanisms and aging effects on SVV perception, however, remain unclear.

Objective: This study seeks to examine aging-related changes in SVV perception and uncover its neurological underpinnings through functional near-infrared spectroscopy (fNIRS).

View Article and Find Full Text PDF

Introduction: The vergence neural system was stimulated to dissect the afferent and efferent components of symmetrical vergence eye movement step responses. The hypothesis tested was whether the afferent regions of interest would differ from the efferent regions to serve as comparative data for future clinical patient population studies.

Methods: Thirty binocularly normal participants participated in an oculomotor symmetrical vergence step block task within a functional MRI experiment compared to a similar sensory task where the participants did not elicit vergence eye movements.

View Article and Find Full Text PDF

Iron in the brain is essential to neurodevelopmental processes, as it supports neural functions, including processes of oxygen delivery, electron transport, and enzymatic activity. However, the development of brain iron before birth is scarcely understood. By estimating R2* (1/T2*) relaxometry from a sizable sample of fetal multiecho echo-planar imaging (EPI) scans, which is the standard sequence for functional magnetic resonance imaging (fMRI), across gestation, this study investigates age and sex-related changes in iron, across regions and tissue segments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!