A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A parametric model fitting time to first event for overdispersed data: application to time to relapse in multiple sclerosis. | LitMetric

A parametric model fitting time to first event for overdispersed data: application to time to relapse in multiple sclerosis.

Lifetime Data Anal

Department of Mathematics (DIMAT), Polytechnic of Turin, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.

Published: April 2012

In this article, we propose a parametric model for the distribution of time to first event when events are overdispersed and can be properly fitted by a Negative Binomial distribution. This is a very common situation in medical statistics, when the occurrence of events is summarized as a count for each patient and the simple Poisson model is not adequate to account for overdispersion of data. In this situation, studying the time of occurrence of the first event can be of interest. From the Negative Binomial distribution of counts, we derive a new parametric model for time to first event and apply it to fit the distribution of time to first relapse in multiple sclerosis (MS). We develop the regression model with methods for covariate estimation. We show that, as the Negative Binomial model properly fits relapse counts data, this new model matches quite perfectly the distribution of time to first relapse, as tested in two large datasets of MS patients. Finally we compare its performance, when fitting time to first relapse in MS, with other models widely used in survival analysis (the semiparametric Cox model and the parametric exponential, Weibull, log-logistic and log-normal models).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10985-011-9207-zDOI Listing

Publication Analysis

Top Keywords

time relapse
16
parametric model
12
time event
12
distribution time
12
negative binomial
12
time
8
fitting time
8
relapse multiple
8
multiple sclerosis
8
binomial distribution
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!