Purpose: The aim of the present work was to perform the labelling of granulocytes by their engulfment with chitosan-coated magnetic (64)Cu nanoparticles (MNPs) in order to obtain a radiopharmaceutical suitable for dual imaging (PET-MRI) of inflammatory/infective diseases.

Procedures: Specimens of 5-20 mg MNPs were washed with saline-isotonic solution and recuperated by magnetic decantation; 15-58 μg Cu(2+) (CuCl(2)·H(2)O) in 50 μl of acidified (pH 5.5) saline solution was added to the MNPs re-suspended saline-isotonic solution; 10 mg MNPs was allowed to react with 16 μg (64)Cu [(64)Ni(p,n) at 12-9 MeV] followed by anion exchange chromatography with a specific activity of 56 MBq/μg. Pellets of granulocytes were obtained from peripheral blood; MNPs engulfment by granulocytes was obtained and granulocyte-engulfed viability was assessed by the trypan blue exclusion (TBE) test performed at 5 min, 2 h and 4 h; assessment of the release of (64)Cu from labelled granulocytes in plasma was performed by measuring the radioactivity of both the cellular pellet and the supernatant solution.

Results: Our data showed the binding capacity of chitosan-coated MNPs for cationic metal. The amount of Cu(+2) chelated captured per milligram of MNPs was constant and independent of the reagent concentrations. In all cases, more than 90% of the engulfed granulocytes were positive to the TBE test. The MNPs were localised within the cells.

Conclusion: In our in vitro model, MNPs are taken up by granulocytes through phagocytosis, whereas previously described methods were based on the use of a chelating agent that permit Cu to cross the cell membrane. Moreover, the (64)Cu-engulfed granulocytes showed a high stability of up to 80% of retained radioactivity after 24 h of incubation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11307-011-0526-yDOI Listing

Publication Analysis

Top Keywords

mnps
9
labelling granulocytes
8
chitosan-coated magnetic
8
saline-isotonic solution
8
tbe test
8
granulocytes
7
granulocytes phagocytic
4
phagocytic engulfment
4
engulfment 64cu-labelled
4
64cu-labelled chitosan-coated
4

Similar Publications

Quantitative tracking of the transformation of micro- and nanoplastics in simulated human body fluid.

J Hazard Mater

December 2024

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Health and Environment, Jianghan University, Wuhan 430056, China.

Micro- and nanoplastics (MNPs) are widespread in the environment and food, posing ingestion risks through various pathways. However, their transformation in human body fluids (SBFs), especially the formation of secondary nanoparticles (NPs), is not well understood due to inadequate quantification methods. This study proposed a robust method for quantifying eight common MNPs using pressurized liquid extraction (PLE) for pretreatment and pyrolysis gas chromatography-quadrupole time-of-flight mass spectrometry (Py-GC-QTOF-MS) for analysis.

View Article and Find Full Text PDF

Unlabelled: Today, nanoplastics (NPs) are a growing environmental concern due to their persistence and widespread distribution, posing risks to ecosystems and human health. Their ability to transport pollutants makes them particularly dangerous, underscoring the urgent need for effective removal methods. Herein, we report the synthesis of an environmentally friendly material that enables the magnetic removal of polystyrene nanoparticles (PSNPs) from aqueous solutions by green chemistry approach.

View Article and Find Full Text PDF

Rapid on-site diagnosis of PEDV and PoRV co-infection by gold magnetic nanoparticles-based SERS immunochromatography.

Talanta

December 2024

College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, China. Electronic address:

Porcine epidemic diarrhea virus (PEDV) and porcine rotavirus (PoRV) are the two main pathogens causing porcine diarrhea, which are characterized by high morbidity and mortality. Most of the diagnostic methods available are limited to the laboratory or fail to highlight their advantages in terms of target species, detection time, sensitivity, and stability. To meet the demand for rapid on-site diagnosis of PEDV and PoRV co-infection, a surface-enhanced Raman scattering (SERS) immunochromatographic sensor based on gold magnetic nanoparticles (MNPs) was developed.

View Article and Find Full Text PDF

A new path in bone tissue engineering: polymer-based 3D-printed magnetic scaffolds (a comprehensive review of and studies).

J Biomater Sci Polym Ed

December 2024

Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

Bone tissue engineering is a promising approach to address the increasing need for bone repair. Scaffolds play a crucial role in providing the structural framework for cell growth and differentiation. 3D printing offers precise control over scaffold design and fabrication.

View Article and Find Full Text PDF

Computational modeling of superparamagnetic nanoparticle-based (affinity) diagnostics.

Front Bioeng Biotechnol

December 2024

Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.

Introduction: Magnetic nanoparticles (MNPs), particularly iron oxide nanoparticles (IONPs), are renowned for their superparamagnetic behavior, allowing precise control under external magnetic fields. This characteristic makes them ideal for biomedical applications, including diagnostics and drug delivery. Superparamagnetic IONPs, which exhibit magnetization only in the presence of an external field, can be functionalized with ligands for targeted affinity diagnostics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!