Understanding the regioselectivity in Scholl reactions for the synthesis of oligoarenes.

Chem Commun (Camb)

Fachbereich Chemie, Hans-Meerwein-Str., 35043 Marburg, Germany.

Published: January 2012

A short reaction sequence leads to oligoarene derivatives utilising a regioselective Scholl reaction for the unprecedented cyclisation to the mono-functionalised oligoarene under methanol elimination. Quantum-chemical investigations reveal the reason for the remarkably high regioselectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1cc15980aDOI Listing

Publication Analysis

Top Keywords

understanding regioselectivity
4
regioselectivity scholl
4
scholl reactions
4
reactions synthesis
4
synthesis oligoarenes
4
oligoarenes short
4
short reaction
4
reaction sequence
4
sequence leads
4
leads oligoarene
4

Similar Publications

Recent Advances in Asymmetric Organometallic Electrochemical Synthesis (AOES).

Acc Chem Res

January 2025

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

ConspectusIn recent years, our research group has dedicated significant effort to the field of asymmetric organometallic electrochemical synthesis (AOES), which integrates electrochemistry with asymmetric transition metal catalysis. On one hand, we have rationalized that organometallic compounds can serve as molecular electrocatalysts (mediators) to reduce overpotentials and enhance both the reactivity and selectivity of reactions. On the other hand, the conditions for asymmetric transition metal catalysis can be substantially improved through electrochemistry, enabling precise modulation of the transition metal's oxidation state by controlling electrochemical potentials and regulating the electron transfer rate via current adjustments.

View Article and Find Full Text PDF

The 4-aminoquinazoline scaffold is a privileged structure in medicinal chemistry. Regioselective nucleophilic aromatic substitution (SAr) for replacing the chlorine atom at the 4-position of 2,4-dichloroquinazoline precursors is well documented in the scientific literature and has proven useful in synthesizing 2-chloro-4-aminoquinazolines and/or 2,4-diaminoquinazolines for various therapeutic applications. While numerous reports describe reaction conditions involving different nucleophiles, solvents, temperatures, and reaction times, discussions on the regioselectivity of the SAr step remain scarce.

View Article and Find Full Text PDF
Article Synopsis
  • Site-selective labeling techniques for protein modification are crucial for studying biological functions and dynamics within cells.
  • Despite advances, achieving specific modifications without altering protein functionality remains a challenge in the field.
  • The review explores various methodologies, including synthetic probes and computational approaches, that enhance our understanding of proteins and improve biopharmaceutical applications.
View Article and Find Full Text PDF

Deep learning-driven prediction of chemical addition patterns for carboncones and fullerenes.

Phys Chem Chem Phys

January 2025

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.

Carboncones and fullerenes are exemplary π-conjugated carbon nanomaterials with unsaturated, positively curved surfaces, enabling the attachment of atoms or functional groups to enhance their physicochemical properties. However, predicting and understanding the addition patterns in functionalized carboncones and fullerenes are extremely challenging due to the formidable complexity of the regioselectivity exhibited in the adducts. Existing predictive models fall short in systems where the carbon molecular framework undergoes severe distortion upon high degrees of addition.

View Article and Find Full Text PDF

An efficient strategy for preparing the novel -difluoroalkylhydroxylamine fluorinated functional group, coined FON, is reported. This analogue of medicinally important β-phenethyl ether scaffolds in uniting -difluoro and N-O moieties is synthesized in one step via chemo- and regioselectivity metal-free hydroetherification-type additions. As shown, this unique mode of reactivity is realized for a diverse substrate scope and applied to gram-scale synthesis and site-selective deuterium incorporation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!