Lack of influence of extracellular polymeric substances (EPS) level on hydroxyl radical mediated disinfection of Escherichia coli.

Environ Sci Technol

Department of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States.

Published: January 2012

Photolysis of nitrate, a prevalent constituent in agriculturally impacted waters, may influence pathogen attenuation in such systems through production of hydroxyl radical ((•)OH). This study focuses on the efficacy of (•)OH generated during nitrate photolysis in promoting E. coli die-off as a function of extracellular polymeric substances (EPS) coverage. EPS levels of four E. coli isolates were systematically altered through a sonication extraction method and photochemical batch experiments with a solar simulator examined isolate viability loss as a function of time in nitrate solutions. E. coli viability loss over time exhibited two regimes: an initial induction time, t(s), with little decay was followed by rapid exponential decay characterized by a first-order disinfection rate constant, k. Increasing steady-state (•)OH concentrations enhanced E. coli viability loss, increasing values of k and decreasing t(s) values, both of which were quantified with a multitarget bacterial disinfection model. Notably, at a given steady-state (•)OH concentration, values of t(s) and k were independent of EPS levels, nor did they vary among the different E. coli strains considered. Results herein show that while (•)OH generated via nitrate photolysis enhances rates of disinfection in surface water, the mechanism by which (•)OH kills E. coli is relatively insensitive to common bacterial variables.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es202541rDOI Listing

Publication Analysis

Top Keywords

viability loss
12
extracellular polymeric
8
polymeric substances
8
substances eps
8
hydroxyl radical
8
•oh generated
8
generated nitrate
8
nitrate photolysis
8
eps levels
8
coli viability
8

Similar Publications

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione protects against MPP-induced neurotoxicity by ameliorating oxidative stress, apoptosis and autophagy in SH-SY5Y cells.

Metab Brain Dis

January 2025

Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.

View Article and Find Full Text PDF

Ginkgolide B regulates apoptosis, oxidative stress, and mitochondrial dysfunction in MPP-induced SK-N-SH cells by targeting HDAC4/JNK pathway.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Huai'an Hospital Affiliated to Yangzhou University, The Fifth People's Hospital of Huai'an), 1 Huaihe East Road, Huaiyin District, Huai'an City, Jiangsu Province, China.

Ginkgolide B (GB) is a bioactive constituent found in Ginkgo biloba leaves that has been long recognized as a protective agent against many neurological disorders. Our study aimed to examine the effect of GB in an in vitro Parkinson's disease (PD) model and to investigate its neuroprotective mechanism as a primary objective. SK-N-SH cells were challenged with 1-methyl-4-phenylpyridinium (MPP) to act as a PD-like model of neuronal damage.

View Article and Find Full Text PDF

Decay of self-incompatibility within a lifespan in Physalis acutifolia (Solanaceae).

Plant Reprod

January 2025

Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street, Boulder, CO, 80309, USA.

Self-incompatibility decays with age in plants of Physalis acutifolia, and plants that have transitioned to selfing produce fewer seeds but with comparable viability. Self-compatibility in this system is closely related to flower size, which is in turn dependent on the direction of the cross, suggesting parental effects on both morphology and compatibility. The sharpleaf groundcherry, Physalis acutifolia, is polymorphic for self-compatibility, with naturally occurring self-incompatible (SI) and self-compatible (SC) populations.

View Article and Find Full Text PDF

Hollow-core optical fiber (HCF) gas cells are an attractive option for many applications including metrology and non-linear optics due to the enhanced gas-light interaction length in a compact and lightweight format. Here, we report the first demonstration and characterization of a selectively pressurized, hermetically sealed hollow-core fiber-based gas cell, where the core is filled with a higher gas pressure than the cladding to enhance the optical performance. This differential gas pressure creates a gas-induced differential refractive index (GDRI) that is shown to enable significant modification of the HCF's optical performance.

View Article and Find Full Text PDF

Achieving high-crystalline-quality, large-size iron garnet magneto-optic (MO) films on silicon substrates remains a critical challenge for CMOS-compatible on-chip non-reciprocal devices like isolators and circulators. In this study, we explored ion slicing on commercial yttrium iron garnet (YIG) crystals, bismuth-doped iron garnet (BIG), and newly developed YIG ceramics. After He ion implantation, wafer bonding and annealing, the BIG film on silicon was successfully fabricated, but its thickness and crystalline phase deviated from expectations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!