Tetra-p-guanidinoethylcalix[4]arene trifluoroacetate salt (CX1) was synthesized recently as an antibacterial agent. It showed to be active in vitro against various Gram-positive and Gram-negative bacteria. To get more insight in the mechanism of the biological activity of this derivative, it was studied upon interactions with model lipid membranes. Langmuir monolayers were formed with zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine or 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine, and with anionic 1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) and 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine. The two classes of lipids were used, respectively, as model lipids of the eukaryotic and bacterial cell membranes. The monolayers were exposed to CX1 at different concentrations around the minimum inhibitory concentration found for E. coli . The surface pressure-area and surface potential-area compression isotherms, as well as Brewster angle microscopy and polarization-modulation infrared reflection-absorption spectroscopy, were employed to study the monolayers. The results obtained show a higher affinity of CX1 for the anionic lipids, indicating importance of charge-charge interactions. On the basis of a comparative study of the behavior of CX1 and that of p-guanidinoethylphenol trifluoroacetate salt, we propose that interplay of charge-charge and apolar interactions between CX1 and lipids is responsible for the important reorganization of model membranes. This proposal may be helpful in developing new antibacterial calixarene derivatives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp208970g | DOI Listing |
Pharmaceuticals (Basel)
November 2024
Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India.
: Pyroptosis, an inflammatory cell death, is involved in the progression of atherosclerosis. Pyroptosis in endothelial cells (ECs) and its underlying mechanisms in atherosclerosis are poorly understood. Here, we investigated the role of a caspase-4/5-NF-κB pathway in pyroptosis in palmitic acid (PA)-stimulated ECs and EVs as players in pyroptosis.
View Article and Find Full Text PDFNature
November 2024
Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, China.
Polyfluoroalkyl and perfluoroalkyl substances (PFASs) are found in many everyday consumer products, often because of their high thermal and chemical stabilities, as well as their hydrophobic and oleophobic properties. However, the inert carbon-fluorine (C-F) bonds that give PFASs their properties also provide resistance to decomposition through defluorination, leading to long-term persistence in the environment, as well as in the human body, raising substantial safety and health concerns. Despite recent advances in non-incineration approaches for the destruction of functionalized PFASs, processes for the recycling of perfluorocarbons (PFCs) as well as polymeric PFASs such as polytetrafluoroethylene (PTFE) are limited to methods that use either elevated temperatures or strong reducing reagents.
View Article and Find Full Text PDFLangmuir
November 2024
University of Health and Rehabilitation Sciences, School of Foundational Education, Qingdao 266113, PR China.
Higher biocidability of fluorinated quaternary ammonium salt (QAS) is usually contributed to its preferential segregation to the surface to better contact with and kill bacteria. However, whether its structure also elicits better performance is still unclear. Herein, the same amount of a fluorinated QAS and its nonfluorinated counterpart are both immobilized on the top surface to eliminate the effect of concentration distribution to only study their structure-biocidability relationship.
View Article and Find Full Text PDFSmall
December 2024
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China.
Molecules
September 2024
Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
A rapid, selective, and sensitive liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantitation of MO-OH-Nap tropolone (MO-OH-Nap) in mouse plasma. MO-OH-Nap is an α-substituted tropolone with anti-proliferative properties in various cancer cell lines. Detection and separation of analytes was achieved on an ACE Excel C18 (1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!