For several decades, many methods have been developed for predicting organic synthesis paths. However these methods have non-polynomial computational time. In this paper, we propose a bottom-up dynamic programming algorithm to predict synthesis paths of target tree-structured compounds. In this approach, we transform the synthesis problem of tree-structured compounds to the generation problem of unordered trees by regarding tree-structured compounds and chemical reactions as unordered trees and rules, respectively. In order to represent rules corresponding to chemical reactions, we employ a subclass of NLC (Node Label Controlled) grammars. We also give some computational results on this algorithm.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!