Background: Matriptase is a membrane-anchored serine protease encoded by suppression of tumorigenicity-14 (ST14) that is required for epithelial barrier homeostasis. However, its functional role in inflammatory bowel disease (IBD) is unexplored.
Methods: Matriptase expression in control, Crohn's disease, and ulcerative colitis tissue specimens was studied by quantitative polymerase chain reaction (qPCR) and immunostaining. Matriptase function was investigated by subjecting St14 hypomorphic and control littermates to dextran sodium sulfate (DSS)-induced colitis and by siRNA silencing in cultured monolayers. Mice were analyzed for clinical, histological, molecular, and cellular effects.
Results: Matriptase protein and ST14 mRNA levels are significantly downregulated in inflamed colonic tissues from Crohn's disease and ulcerative colitis patients. Matriptase-deficient St14 hypomorphic mice administered DSS for 7 days followed by water without DSS for 3 days develop a severe colitis, with only 30% of the St14 hypomorphic mice surviving to day 14, compared with 100% of control littermates. Persistent colitis in surviving St14 hypomorphic mice was associated with sustained cytokine production, an inability to recover barrier integrity, and enhanced claudin-2 expression. Cytokines implicated in barrier disruption during IBD suppress matriptase expression in T84 epithelial monolayers and restoration of matriptase improves barrier integrity in the cytokine-perturbed monolayers.
Conclusions: These data demonstrate a critical role for matriptase in restoring barrier function to injured intestinal mucosa during colitis, which is suppressed by excessive activation of the immune system. Strategies to enhance matriptase-mediated barrier recovery could be important for intervening in the cycle of inflammation associated with IBD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3288858 | PMC |
http://dx.doi.org/10.1002/ibd.21930 | DOI Listing |
J Cell Biol
February 2020
Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany.
The type II transmembrane serine protease Matriptase 1 (ST14) is commonly known as an oncogene, yet it also plays an understudied role in suppressing carcinogenesis. This double face is evident in the embryonic epidermis of zebrafish loss-of-function mutants in the cognate Matriptase inhibitor Hai1a (Spint1a). Mutant embryos display epidermal hyperplasia, but also apical cell extrusions, during which extruding outer keratinocytes carry out an entosis-like engulfment and entrainment of underlying basal cells, constituting a tumor-suppressive effect.
View Article and Find Full Text PDFCompromised gastrointestinal barrier function is strongly associated with the progressive and destructive pathologies of the two main forms of irritable bowel disease (IBD), ulcerative colitis (UC), and Crohn's disease (CD). Matriptase is a membrane-anchored serine protease encoded by uppression of umorigenicity- ( gene, which is critical for epithelial barrier development and homeostasis. Matriptase barrier-protective activity is linked with the glycosylphosphatidylinositol (GPI)-anchored serine protease prostasin, which is a co-factor for matriptase zymogen activation.
View Article and Find Full Text PDFInflamm Bowel Dis
July 2012
Center for Vascular and Inflammatory Diseases and Department of Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Québec, Canada.
Background: Matriptase is a membrane-anchored serine protease encoded by suppression of tumorigenicity-14 (ST14) that is required for epithelial barrier homeostasis. However, its functional role in inflammatory bowel disease (IBD) is unexplored.
Methods: Matriptase expression in control, Crohn's disease, and ulcerative colitis tissue specimens was studied by quantitative polymerase chain reaction (qPCR) and immunostaining.
Proc Natl Acad Sci U S A
March 2010
Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
The intestinal epithelium serves as a major protective barrier between the mammalian host and the external environment. Here we show that the transmembrane serine protease matriptase plays a pivotol role in the formation and integrity of the intestinal epithelial barrier. St14 hypomorphic mice, which have a 100-fold reduction in intestinal matriptase mRNA levels, display a 35% reduction in intestinal transepithelial electrical resistance (TEER).
View Article and Find Full Text PDFDevelopment
August 2009
Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
Hypomorphic mutations in the human SPINT2 gene cause a broad spectrum of abnormalities in organogenesis, including organ and digit duplications, atresia, fistulas, hypertelorism, cleft palate and hamartoma. SPINT2 encodes the transmembrane serine protease inhibitor HAI2 (placental bikunin), and the severe developmental effects of decreased HAI2 activity can be hypothesized to be a consequence of excess pericellular proteolytic activity. Indeed, we show here that HAI2 is a potent regulator of protease-guided cellular responses, including motogenic activity and transepithelial resistance of epithelial monolayers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!