Diauxic growth was observed in anaerobic C(4)-dicarboxylate-adapted cells of "Aromatoleum aromaticum" EbN1 due to preferred benzoate utilization from a substrate mixture of a C(4)-dicarboxylate (succinate, fumarate, or malate) and benzoate. Differential protein profiles (two-dimensional difference gel electrophoresis [2D DIGE]) revealed dynamic changes in abundance for proteins involved in anaerobic benzoate catabolism and C(4)-dicarboxylate uptake. In the first active growth phase, benzoate utilization was paralleled by maximal abundance of proteins involved in anaerobic benzoate degradation (e.g., benzoyl-coenzyme A [CoA] reductase) and minimal abundance of DctP (EbA4158), the periplasmic binding protein of a predicted C(4)-dicarboxylate tripartite ATP-independent periplasmic (TRAP) transporter (DctPQM). The opposite was observed during subsequent succinate utilization in the second active growth phase. The increased dctP (respectively, dctPQM) transcript and DctP protein abundance following benzoate depletion suggests that repression of C(4)-dicarboxylate uptake seems to be a main determinant for the observed diauxie.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256680PMC
http://dx.doi.org/10.1128/JB.05072-11DOI Listing

Publication Analysis

Top Keywords

repression c4-dicarboxylate
8
"aromatoleum aromaticum"
8
aromaticum" ebn1
8
benzoate utilization
8
abundance proteins
8
proteins involved
8
involved anaerobic
8
anaerobic benzoate
8
c4-dicarboxylate uptake
8
active growth
8

Similar Publications

Regulatory mechanism of C4-dicarboxylates in cyclo (Phe-Pro) production.

Microb Cell Fact

September 2024

State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.

Cyclo (Phe-Pro) (cFP), a cyclic dipeptide with notable antifungal, antibacterial, and antiviral properties, shows great promise for biological control of plant diseases. Produced as a byproduct by non-ribosomal peptide synthetases (NRPS), the regulatory mechanism of cFP biosynthesis remains unclear. In a screening test of 997 Tn5 mutants of Burkholderia seminalis strain R456, we identified eight mutants with enhanced antagonistic effects against Fusarium graminearum (Fg).

View Article and Find Full Text PDF

Introduction: C4-dicarboxylates (C4-DC) have emerged as significant growth substrates and signaling molecules for various Enterobacteriaceae during their colonization of mammalian hosts. Particularly noteworthy is the essential role of fumarate respiration during colonization of pathogenic bacteria. To investigate the regulation of aerobic C4-DC metabolism, the study explored the transcriptional control of the main aerobic C4-DC transporter, dctA, under different carbohydrate conditions.

View Article and Find Full Text PDF

Fumarate disproportionation by Geobacter sulfurreducens and its involvement in biocorrosion and interspecies electron transfer.

Sci Total Environ

June 2022

School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; Institut WUT-AMU, Wuhan University of Technology, Wuhan 430070, PR China; State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, PR China. Electronic address:

The model electroactive bacterium Geobacter sulfurreducens can acquire electrons directly from solid donors including metals and other species. Reports on this physiology concluding that solid donors are the only electron sources were conducted with fumarate believed to serve exclusively as the terminal electron acceptor (TEA). Here, G.

View Article and Find Full Text PDF

Background: At high concentrations of organic substrates, microbial utilization of preferred substrates (i.e., supporting fast growth) often results in diauxic growth with hierarchical substrate depletion.

View Article and Find Full Text PDF

Towards habitat-oriented systems biology of "Aromatoleum aromaticum" EbN1: chemical sensing, catabolic network modulation and growth control in anaerobic aromatic compound degradation.

Appl Microbiol Biotechnol

April 2014

Institut für Chemie und Biologie des Meeres (ICBM), AG Allgemeine und Molekulare Mikrobiologie, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky Str. 9-11, 26111, Oldenburg, Germany,

The denitrifying betaproteobacterium "Aromatoleum aromaticum" EbN1 is a well-studied model organism for anaerobic degradation of aromatic compounds. Following publication of its genome in 2005, comprehensive physiological-proteomic studies were conducted to deduce functional understanding from the genomic blueprint. A catabolic network (85 predicted, 65 identified proteins) for anaerobic degradation of 24 aromatic growth substrates (including 11 newly recognized) was established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!