Bacterial community profiles from sediments of the Anacostia River using metabolic and molecular analyses.

Environ Sci Pollut Res Int

Department of Biology and Natural Sciences, Northern Virginia Community College, 8333 Little River Turnpike, Annandale, VA 22003, USA.

Published: May 2012

Unlabelled: BACKGROUND AIM AND SCOPE: Though the tidal Anacostia River, a highly polluted riverine system, has been well characterized with regard to contaminants, its overall resident bacterial populations have remained largely unknown. Improving the health of this system will rely upon enhanced understanding of the diversity and functions of these communities. Bacterial DNA was extracted from archived (AR, year 2000) and fresh sediments (RE, year 2006) collected from various locations within the Anacostia River. Using a combination of metabolic and molecular techniques, community snapshots of sediment bacterial diversity and activity were produced.

Results: Employing Biolog EcoPlates, metabolic analysis of RE sediments from July revealed similar utilization of amines, amino acids, carbohydrates, carboxylic acids, and polymers at all sites. Normalized optical density measurements demonstrated that for most compounds, utilizations were similar though when differences did occur, the downstream site was enhanced compared to one or both of the upstream sites. Using denaturing gradient gel electrophoresis, bacterial diversity fingerprints of operational taxonomic units (OTUs) were obtained. Dendograms of the banding patterns revealed qualitative relationships as well as differences between replicate samples from similar sites. Replicates from the AR sites shared several common OTUs, while RE sites were more varied. Species richness and Shannon diversity indices generally increased with increasingly downstream locations, and were significant for the AR sediments (analysis of variance, P < 0.0001). Carbon and nitrogen content and concentration of fine grain sediment (<63 μm) were positively correlated with OTU richness (r (2) = 0.37, P = 0.0008; r (2) = 0.45, P < 0.0001; r (2) = 0.48, P = 0.001, respectively).

Conclusions: This study demonstrated that the bacterial communities from all regions sampled were not only metabolically active with the capacity to utilize several different compounds as energy sources but also were genetically diverse. This study is the first to focus on the overall bacterial community, providing insight into this vital component of stream ecosystems. Understanding the bacterial components of aquatic systems such as the Anacostia River will increase our knowledge of the overall structure and function of the ecological communities in polluted systems, subsequently enhancing our ability to improve the health of this important tidal river.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-011-0656-4DOI Listing

Publication Analysis

Top Keywords

anacostia river
12
metabolic molecular
8
bacterial diversity
8
bacterial
5
sites
5
bacterial community
4
community profiles
4
sediments
4
profiles sediments
4
sediments anacostia
4

Similar Publications

Urban areas are built environments containing substantial amounts of impervious surfaces (e.g., streets, sidewalks, roof tops).

View Article and Find Full Text PDF

Genetic fecal source identification in urban streams impacted by municipal separate storm sewer system discharges.

PLoS One

January 2023

U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States of America.

Municipal stormwater systems are designed to collect, transport, and discharge precipitation from a defined catchment area into local surface waters. However, these discharges may contain unsafe levels of fecal waste. Paired measurements of Escherichia coli, precipitation, three land use metrics determined by geographic information system (GIS) mapping, and host-associated genetic markers indicative of human (HF183/BacR287 and HumM2), ruminant (Rum2Bac), dog (DG3), and avian (GFD) fecal sources were assessed in 231 urban stream samples impacted by two or more municipal stormwater outfalls.

View Article and Find Full Text PDF

Codeployment of Passive Samplers and Mussels Reveals Major Source of Ongoing PCB Inputs to the Anacostia River in Washington, DC.

Environ Sci Technol

January 2023

Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland21250, United States.

Remedial investigations of sites contaminated with legacy pollutants like polychlorinated biphenyls (PCBs) have traditionally focused on mapping sediment contamination to develop a site conceptual model and select remedy options. Ignoring dissolved concentrations that drive transport and bioaccumulation often leads to an incomplete assessment of ongoing inputs to the water column and overestimation of potential effectiveness of sediment remediation. Here, we demonstrate the utility of codeployment of passive equilibrium samplers and freshwater mussels as dual lines of evidence to identify ongoing sources of PCBs from eight main tributaries of the Anacostia River in Washington, DC, that has been historically polluted from industrial and other human activities.

View Article and Find Full Text PDF

Seasonal trends of PCBs in air over Washington DC reveal localized urban sources and the influence of Anacostia River.

Environ Pollut

January 2023

Dept. of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA. Electronic address:

Semi-volatile organic compounds like polychlorinated biphenyls (PCBs) undergo diffusive exchange flux between a water body and the overlying air. The magnitude of this exchange can be a substantial component of the overall pollutant mass balance and needs to be determined accurately to identify major pollutant sources to the water body and to plan appropriate remedies. For the PCB-impacted Anacostia River in Washington DC (USA), quantification of air-water exchange has been a major data gap.

View Article and Find Full Text PDF

Siloxanes are used in personal care, biomedical, and industrial products. Their worldwide use and persistence in the environment cause consistent exposure for both humans and aquatic animals. Two siloxane congeners, decamethylcyclopentasiloxane (D5; CAS 541-02-6) and octamethylcyclotetrasiloxane (D4; CAS 556-67-2), are among the most prevalent, with measurable levels in air, sediment, water, and biological samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!