The in situ synthesis is reported of noble metal nanoparticles via 3-glycidoxypropyltrimethoxysilane mediated reduction of 3-aminopropyltrimethoxysilane treated metal salts during sol-gel processing. The method described involves the synthesis of uniform spherical nanoparticles of gold, silver and palladium with controlled size that can be directly utilized for thin film preparation. A detailed study of the synthesis and application of gold nanoparticles to the electrochemical detection of hydrogen peroxide was carried out and reveals that the amplification of hydrogen peroxide sensing is size-dependent. In addition, these nanoparticles exhibit excellent compatibility towards composite preparation. As an example, a nanocomposite with Prussian Blue (PB) is synthesized and found to be useful for the fabrication of chemically modified electrodes (CME). The resulting CME shows dramatic improvement in the electrochemistry of PB with gradual enhancement in electrocatalytic efficiency towards hydrogen peroxide sensing. The nanocomposite is used to study the direct and horseradish peroxidase (HRP)-catalyzed reduction of hydrogen peroxide. The results recorded for hydrogen peroxide analysis show an improvement in sensitivity and limit of detection on decreasing the size of gold nanoparticles in all cases.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1an15843kDOI Listing

Publication Analysis

Top Keywords

hydrogen peroxide
24
peroxide sensing
12
3-glycidoxypropyltrimethoxysilane mediated
8
situ synthesis
8
noble metal
8
metal nanoparticles
8
gold nanoparticles
8
nanoparticles
6
hydrogen
6
peroxide
6

Similar Publications

Automated electrochemical oxygen sensing using a 3D-printed microfluidic lab-on-a-chip system.

Lab Chip

January 2025

Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel.

Dissolved oxygen is crucial for metabolism, growth, and other complex physiological and pathological processes; however, standard physiological models (such as organ-on-chip systems) often use ambient oxygen levels, which do not reflect the lower levels that are typically found . Additionally, the local generation of reactive oxygen species (ROS; a key factor in physiological systems) is often overlooked in biology-mimicking models. Here, we present a microfluidic system that integrates electrochemical dissolved oxygen sensors with lab-on-a-chip technology to monitor the physiological oxygen concentrations and generate hydrogen peroxide (HO; a specific ROS).

View Article and Find Full Text PDF

The oxidation of Met residues in proteins is a complex process, where protein-specific structural and dynamical features play a relevant role in determining the reaction kinetics. Aiming to a full-side perspective, we report here a comprehensive characterization of Met oxidation kinetics by hydrogen peroxide in a leptin protein case study. To do that, we estimated the reaction-free energy profile of the Met oxidation via a QM/MM approach, while the kinetics of the formation of the reactive species were calculated using classical molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

We studied the effect of acteoside on a model of human corneal epithelial cells (HCEC) injury induced by HO. HCEC were divided into 4 groups and cultured for 24 h in normal medium (intact and control groups, respectively), or in a medium containing DMSO or 160 μM acteoside (DMSO and acteoside groups, respectively). Then, HO solution was added to HCEC for 4 h, except for intact cells.

View Article and Find Full Text PDF

In a quest to innovate biologically active molecules, the benzoylation of 4,6-dimethylpyrimidine-2-thiol hydrochloride (1) with benzoyl chloride derivatives was employed to produce a series of pyrimidine benzothioate derivatives (2-5). Subsequent sulfoxidation of these derivatives (2-5) using hydrogen peroxide and glacial acetic acid yielded a diverse array of pyrimidine sulfonyl methanone derivatives (6-9). In parallel, the sulfoxidation of pyrimidine sulfonothioates (10-12) yielded sulfonyl sulfonyl pyrimidines (13-15), originating from the condensation of compound 1 with sulfonyl chloride derivatives.

View Article and Find Full Text PDF
Article Synopsis
  • Acanthamoeba species are protozoa that can cause serious eye and CNS infections, and current treatments are often ineffective, especially in specific areas like the eye.
  • The study evaluates the effectiveness of ethanolic fruit extract of E. umbellata, silver nanoparticles derived from it, and lauric acid in killing Acanthamoeba trophozoites and protecting DNA from damage.
  • Results show that these treatments can significantly kill trophozoites and prevent DNA damage, suggesting potential new options for treating Acanthamoeba infections.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!