Glycerol has been used as a means to legitimately hyperhydrate the body in an attempt to offset the deleterious effects of dehydration. It has the potential to mask blood doping practices and as a result has been added to the WADA prohibited substance list. The purpose of this study was to identify the plasma glycerol concentration coinciding with urinary glycerol excretion. Twelve healthy, trained male subjects completed five separate trials under resting conditions. For each trial, subjects consumed a different glycerol dose (0.025, 0.05, 0.10, 0.15, or 0.20 g glycerol/kg LBM) of a 5% glycerol solution in order to determine at what plasma glycerol concentration an increase in urine glycerol concentration becomes apparent. Based on regression analysis, plasma glycerol concentrations > 0.327 ± 0.190 mmol/L and a glycerol dose > 0.032 ± 0.010 g glycerol/kg LBM would be associated with urinary glycerol excretion. There were significant linear relationships between peak plasma glycerol concentration and time to reach peak plasma glycerol concentration to the ingested glycerol doses. Our findings illustrate the importance of considering the effect of urinary glycerol excretion on legitimate hyperhydration regimens as well as suggesting that it is possible to detect surreptitious use of glycerol as a masking agent through urinary analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/anatox/35.9.617 | DOI Listing |
Molecules
January 2025
Department of Food Plant Chemistry and Processing, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland.
In this study, the effectiveness of three choline chloride (ChCl)-based deep eutectic solvents (DESs) formed using malonic acid (MalA), glycerol (Gly), and glucose (Glu) as hydrogen bond donors and two conventional solvents (50% methanol and 50% ethanol) for ultrasonic-assisted extraction (UAE) of antioxidant compounds from four herbs (chamomile, lemon balm, nettle, and spearmint) were estimated. The antioxidant capacity (AC) of the obtained herb extracts was determined by the modified 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and cupric reducing antioxidant capacity (CUPRAC) methods. Profiles of phenolic acids, flavonoid aglycones, and flavonoid glycosides in the green and conventional herb extracts were quantitatively analyzed using ultra-performance liquid chromatography (UPLC).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Melatonin is involved in various functions such as the timing of circadian rhythms, energy metabolism, and body mass gain in experimental animals. However, its effects on adipose tissue lipid metabolism are still unclear. This study analyzes the effects of melatonin on the relative gene expression of lipolytic proteins in rat mesenteric adipose tissue and free fatty acid (FFA) and glycerol plasma levels of male Wistar rats fed a high-fat (HFD) or maintenance diet.
View Article and Find Full Text PDFMol Metab
January 2025
Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Besides its thermogenic capacity, brown adipose tissue (BAT) performs important secretory functions that regulate metabolism. However, the BAT microenvironment and factors involved in BAT homeostasis and adaptation to cold remain poorly characterized. We therefore aimed to study brown adipocyte-derived secreted factors that may be involved in adipocyte function and/or may orchestrate intercellular communications.
View Article and Find Full Text PDFFront Mol Biosci
January 2025
Department of Clinical Laboratory, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China.
Background: Prostate cancer (PCa), the most prevalent malignant neoplasm in males, involves complex biological mechanisms and risk factors, many of which remain unidentified. By employing a novel two-sample Mendelian randomization (MR) approach, this study aims to elucidate the causal relationships between the circulating metabolome and PCa risk, utilizing comprehensive data on genetically determined plasma metabolites and metabolite ratios.
Methods: For the MR analysis, we utilized data from the GWAS Catalog database to analyze 1,091 plasma metabolites and 309 ratios in relation to PCa outcomes within two independent GWAS datasets.
bioRxiv
January 2025
Departments of Integrative Physiology and Neuroscience, Pullman, WA, USA.
The legalization of cannabis in several states across the US has increased the need to better understand its effects on the body, brain, and behavior, particularly in different populations. Rodent models are particularly valuable in this respect because they provide precise control over external variables. Previous rodent studies have found age and sex differences in response to injected Δ-tetrahydrocannabinol (THC), the major psychoactive component of cannabis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!