Objective: To compare fluorescent markers with aerobic colony counts (ACCs) and an adenosine triphosphate (ATP) bioluminescence assay system for assessing terminal cleaning practices.

Design: A prospective observational survey.

Setting: A 500-bed university-affiliated community teaching hospital.

Methods: In a convenience sample of 100 hospital rooms, 5 high-touch surfaces were marked with fluorescent markers before terminal cleaning and checked after cleaning to see whether the marker had been entirely or partially removed. ACC and ATP readings were performed on the same surfaces before and after terminal cleaning.

Results: Overall, 378 (76%) of 500 surfaces were classified as having been cleaned according to fluorescent markers, compared with 384 (77%) according to ACC criteria and 225 (45%) according to ATP criteria. Of 382 surfaces classified as not clean according to ATP criteria before terminal cleaning, those with the marker removed were significantly more likely than those with the marker partially removed to be classified as clean according to ATP criteria (P = .003).

Conclusions: Fluorescent markers are useful in determining how frequently high-touch surfaces are wiped during terminal cleaning. However, contaminated surfaces classified as clean according to fluorescent marker criteria after terminal cleaning were significantly less likely to be classified as clean according to ACC and ATP assays.

Download full-text PDF

Source
http://dx.doi.org/10.1086/662626DOI Listing

Publication Analysis

Top Keywords

terminal cleaning
24
fluorescent markers
16
classified clean
16
surfaces classified
12
atp criteria
12
fluorescent marker
8
assessing terminal
8
high-touch surfaces
8
cleaning marker
8
partially removed
8

Similar Publications

Surface Doping to Suppress Iodine Ion Migration for Stable FAPbI Perovskite Quantum Dot Solar Cells.

Small

December 2024

Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.

Formamidine lead iodide (FAPbI) quantum dots (QDs) have attracted great attention as a new generation of photovoltaic material due to their long carrier diffusion length, benign ambient stability, and light-harvesting ability. However, its large surface area with inherent thermodynamic instability and highly defective ionic termination are still major obstacles to fabricating high-performance devices. Herein, a metallic ion dopant is developed to post-treat FAPbI QDs immediately after their fabrication by using a metal-glutamate salt solution.

View Article and Find Full Text PDF

Emerging two dimensional MXene for corrosion protection in new energy systems: Design and mechanisms.

Adv Colloid Interface Sci

December 2024

Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China. Electronic address:

With the development of new and clean energy (offshore wind power, fuel cells, aqueous zinc ion batteries, lithium-ion batteries, etc.), the corrosion and security problems in special environments of the new energy system have attracted much attention. Corrosion protection on the metals applied in new energy system can reduce the economic loss, security risk, and energy consumption, as well as guarantee the efficiency of energy system.

View Article and Find Full Text PDF
Article Synopsis
  • * A neutral Np(VI) complex was successfully used to establish a reversible 1-electron redox couple in both protic and aprotic organic solvents, characterized through electrochemical and spectroscopic methods.
  • * The research shows that hydrogen bonding with oxo groups and water stabilizes the Np(V) species, supporting the findings about the reduction process and suggesting a unique redox behavior in this system.
View Article and Find Full Text PDF

Background: Meticillin-resistant Staphylococcus aureus (MRSA) is a common causative agent of serious healthcare-related infections in neonatal intensive care units (NICUs). In adult ICUs, pulsed-xenon ultraviolet (PX-UV) disinfection of environmental surfaces, along with alcohol-based hand hygiene and terminal cleaning, has been demonstrated to reduce the MRSA acquisition rate.

Aim: To explore the impact of PX-UV use in NICUs on reducing MRSA transmission.

View Article and Find Full Text PDF

Background: Amyotrophic Lateral Sclerosis (ALS), an incurable motor neuron disease, primarily affects those between the ages of 60-79, and has an approximate post-diagnosis life-expectancy of only two to five years. The condition has an unpredictable but ultimately terminal trajectory that poses challenges for patients, caregivers and healthcare providers. While the diagnosis and disclosure are critical periods for intervention and support, knowledge regarding the relational, communicational and psychodynamic forces that occur within the process of diagnostic disclosure is relatively limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!