Motivation: Multifunctional proteins perform several functions. They are expected to interact specifically with distinct sets of partners, simultaneously or not, depending on the function performed. Current graph clustering methods usually allow a protein to belong to only one cluster, therefore impeding a realistic assignment of multifunctional proteins to clusters.
Results: Here, we present Overlapping Cluster Generator (OCG), a novel clustering method which decomposes a network into overlapping clusters and which is, therefore, capable of correct assignment of multifunctional proteins. The principle of OCG is to cover the graph with initial overlapping classes that are iteratively fused into a hierarchy according to an extension of Newman's modularity function. By applying OCG to a human protein-protein interaction network, we show that multifunctional proteins are revealed at the intersection of clusters and demonstrate that the method outperforms other existing methods on simulated graphs and PPI networks.
Availability: This software can be downloaded from http://tagc.univ-mrs.fr/welcome/spip.php?rubrique197
Contact: brun@tagc.univ-mrs.fr
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244771 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btr621 | DOI Listing |
Brain Spine
July 2023
Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai - 602 105, Tamil Nadu, India.
Angew Chem Int Ed Engl
January 2025
Technische Universität München, Division of Peptide Biochemistry, Emil-Erlenmeyer-Forum 5, 85354, Freising, GERMANY.
Amyloid self-assembly of α-synuclein (αSyn) is linked to the pathogenesis of Parkinson's disease (PD). Type 2 diabetes (T2D) has recently emerged as a risk factor for PD. Cross-interactions between their amyloidogenic proteins may act as molecular links.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
January 2025
Annexins are a family of multifunctional calcium-dependent and phospholipid-binding proteins that are widely distributed in the plant kingdom. They have a highly conserved evolutionary history that dates back to single-celled protists. Plant annexins, as soluble proteins, can flexibly bind to endomembranes and plasma membranes, exhibiting unique calcium-dependent and calcium-independent characteristics.
View Article and Find Full Text PDFNeural Regen Res
January 2025
Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
GEMIN5 is a predominantly cytoplasmic multifunctional protein, known to be involved in recognizing snRNAs through its WD40 repeats domain placed at the N-terminus. A dimerization domain in the middle region acts as a hub for protein-protein interaction, while a non-canonical RNA-binding site is placed towards the C-terminus. The singular organization of structural domains present in GEMIN5 enables this protein to perform multiple functions through its ability to interact with distinct partners, both RNAs and proteins.
View Article and Find Full Text PDFACS Synth Biol
January 2025
Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada.
Smart textiles that integrate multiple environmental sensing capabilities are an emerging frontier in wearable technology. In this study, we developed dual pH- and temperature-responsive textiles by combining engineered bacterial systems with bacterially derived proteins. For temperature sensing, we characterized the properties of a heat sensitive promoter, P, in () using enhanced green fluorescent protein as a reporter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!