This paper reports on the use of boron-doped diamond nanowires (BDD NWs) as an inorganic substrate for matrix-free laser desorption/ionization mass spectrometry (LDI-MS) analysis of small molecules. The diamond nanowires are prepared by reactive ion etching (RIE) with oxygen plasma of highly boron-doped (the boron level is 10(19) B cm(-3)) or undoped nanocrystalline diamond substrates. The resulting diamond nanowires are coated with a thin silicon oxide layer that confers a superhydrophilic character to the surface. To minimize droplet spreading, the nanowires were chemically functionalized with octadecyltrichlorosilane (OTS) and then UV/ozone treated to reach a final water contact angle of 120°. The sub-bandgap absorption under UV laser irradiation and the heat confinement inside the nanowires allowed desorption/ionization, most likely via a thermal mechanism, and mass spectrometry analysis of small molecules. A detection limit of 200 zeptomole for verapamil was demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1nr11274k | DOI Listing |
Analyst
December 2024
Institut de Recherche Interdisciplinaire (IRI), CNRS USR 3078, Université Lille1, Parc de la Haute Borne, 50 avenue de Halley, BP 70478, 59658 Villeneuve d'Ascq, France.
Expression of concern for 'An impedimetric immunosensor based on diamond nanowires decorated with nickel nanoparticles' by Palaniappan Subramanian , , 2014, , 1726-1731, https://doi.org/10.1039/C3AN02045B.
View Article and Find Full Text PDFAnalyst
January 2025
Institut de Recherche Interdisciplinaire (IRI), CNRS USR 3078, Université Lille1, Parc de la Haute Borne, 50 avenue de Halley, BP 70478, 59658 Villeneuve d'Ascq, France.
Expression of concern for 'Diamond nanowires modified with poly[3-(pyrrolyl)carboxylic acid] for the immobilization of histidine-tagged peptides' by Palaniappan Subramanian , , 2014, , 4343-4349, https://doi.org/10.1039/C4AN00146J.
View Article and Find Full Text PDFNat Commun
November 2024
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China.
Manipulation C-C coupling pathway is of great importance for selective CO electroreduction but remain challenging. Herein, two model Cu-based catalysts, by modifying Cu nanowires with Ag nanoparticles (AgCu NW) and Ag single atoms (AgCu NW), respectively, are rationally designed for exploring the C-C coupling mechanisms in electrochemical CO reduction reaction (CORR). Compared to AgCu NW, the AgCu NW exhibits a more than 10-fold increase of C selectivity in CO reduction to ethanol, with ethanol-to-ethylene ratio increased from 0.
View Article and Find Full Text PDFNano Lett
November 2024
Department of Engineering Physics, Ecole Polytechnique de Montreal, C. P. 6079, Succ. Centre-Ville, Montréal, Québec H3C 3A7, Canada.
The work unravels the previously unexplored atomic-scale mechanism involving the interaction of phonons with crystal homointerfaces. Silicon nanowires with engineered isotopic content and crystal phases were chosen for this investigation. Crystal polytypism, manifested by the presence of both diamond cubic and rhombohedral phases within the same nanowire, provided a testbed to study the impact of phase homointerfaces on phonon transport.
View Article and Find Full Text PDFSmall
December 2024
Department of Chemistry, Hasselt University, Diepenbeek, 3590, Belgium.
Diamond nanomaterials are renowned for their exceptional properties, which include the inherent attributes of bulk diamond. Additionally, they exhibit unique characteristics at the nanoscale, including high specific surface areas, tunable surface structure, and excellent biocompatibility. These multifaceted attributes have piqued the interest of researchers globally, leading to an extensive exploration of various diamond nanostructures in a myriad of applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!