A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Three-dimensionally printed polycaprolactone and β-tricalcium phosphate scaffolds for bone tissue engineering: an in vitro study. | LitMetric

Three-dimensionally printed polycaprolactone and β-tricalcium phosphate scaffolds for bone tissue engineering: an in vitro study.

J Oral Maxillofac Surg

Department of Surgery, Buffalo General Hospital, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.

Published: March 2012

Purpose: The purpose of this study was to evaluate porcine bone marrow-derived progenitor cell (pBMPC) proliferation and penetration into a novel 3-dimensionally printed scaffold.

Materials And Methods: Four different tissue engineering scaffolds to evaluate pBMPC proliferation and penetration were examined. Scaffolds were fabricated from polycaprolactone (PCL) or the combination of β-tricalcium phosphate (β-TCP) and PCL (50:50), with 2 separate channel sizes (1 mm [small (S)] vs 2 mm [large (L)]). Scaffolds were fabricated into 20 × 20 × 7-mm blocks by use of a TheriForm machine (Integra Life Sciences, Akron, OH). Four groups of scaffolds were examined for pBMPC proliferation and penetration: group 1, β-TCP/PCL S; group 2, β-TCP/PCL L; group 3, PCL S; and group 4, PCL L. Nonparametric mean (Kruskal-Wallis) and multiple comparisons tests were used to compare the 4 groups.

Results: No shrinkage or deformation was noted in any of the scaffold groups after 2 weeks of culture. Mean surface cell counts ranged from 13.4 to 87.8 cells/0.57 mm(2), with group 1 (β-TCP/PCL S) having statistically significantly higher counts than the other groups (P < .001). Mean interior cell counts ranged from 10.9 to 75.6 cells/0.57 mm(2), with group 1 having the greatest interior cell count (P < .001). Total collagen formation ranged from 0.2% to 86%, with group 1 having the highest collagen formation (P < .001).

Conclusions: The 3-dimensionally printed scaffold (β-TCP/PCL) with 1-mm channels showed greater cellular proliferation, penetration, and collagen formation after a 2-week in vitro culture than the other scaffolds evaluated. β-TCP/PCL S scaffolds warrant further evaluation for bone tissue engineering in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joms.2011.07.029DOI Listing

Publication Analysis

Top Keywords

proliferation penetration
16
tissue engineering
12
pbmpc proliferation
12
group β-tcp/pcl
12
collagen formation
12
β-tricalcium phosphate
8
bone tissue
8
3-dimensionally printed
8
scaffolds fabricated
8
β-tcp/pcl group
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!