Tumor hypoxia is closely associated with the malignant progression and/or the high metastatic ability of tumors and often induces resistance to chemo- and/or radiotherapy. Thus, the detection and evaluation of hypoxia is important for the optimization of cancer therapy. We designed a novel (99m)Tc-labeled probe for tumor hypoxia imaging that utilizes bioreductive reactions in hypoxic cells. This probe, which contains a 4-nitrobenzyl ester group, is reduced in hypoxic cells to produce a corresponding carboxylate anion that cannot penetrate cell membranes because of its hydrophilicity and negative charge; therefore, it is expected to be trapped inside hypoxic cells. Based on this unique strategy, we synthesized the Technetium-99m ((99m)Tc)-labeled probe (99m)Tc-SD32. The uptake of (99m)Tc-SD32 in tumor cells was investigated under normoxic and hypoxic conditions. (99m)Tc-SD32 showed sufficient accumulation and good retention in hypoxic cells. In addition, we demonstrated that (99m)Tc-SD32 was subjected to bioreduction in hypoxic cells and was trapped as the corresponding carboxylate anion. These results indicated that (99m)Tc-SD32 would be a promising agent for in vivo hypoxia imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2011.10.022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!