Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS or Ohdo syndrome) is a multiple anomaly syndrome characterized by severe intellectual disability, blepharophimosis, and a mask-like facial appearance. A number of individuals with SBBYSS also have thyroid abnormalities and cleft palate. The condition usually occurs sporadically and is therefore presumed to be due in most cases to new dominant mutations. In individuals with SBBYSS, a whole-exome sequencing approach was used to demonstrate de novo protein-truncating mutations in the highly conserved histone acetyltransferase gene KAT6B (MYST4/MORF)) in three out of four individuals sequenced. Sanger sequencing was used to confirm truncating mutations of KAT6B, clustering in the final exon of the gene in all four individuals and in a further nine persons with typical SBBYSS. Where parental samples were available, the mutations were shown to have occurred de novo. During mammalian development KAT6B is upregulated specifically in the developing central nervous system, facial structures, and limb buds. The phenotypic features seen in the Qkf mouse, a hypomorphic Kat6b mutant, include small eyes, ventrally placed ears and long first digits that mirror the human phenotype. This is a further example of how perturbation of a protein involved in chromatin modification might give rise to a multisystem developmental disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3213399 | PMC |
http://dx.doi.org/10.1016/j.ajhg.2011.10.008 | DOI Listing |
Biomolecules
December 2024
Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy.
Epigenetics encompasses reversible and heritable genomic changes in histones, DNA expression, and non-coding RNAs that occur without modifying the nucleotide DNA sequence. These changes play a critical role in modulating cell function in both healthy and pathological conditions. Dysregulated epigenetic mechanisms are implicated in various diseases, including cardiovascular disorders, neurodegenerative diseases, obesity, and mainly cancer.
View Article and Find Full Text PDFFoods
January 2025
Department of Food and Nutrition, Gangseo University, Seoul 07661, Republic of Korea.
is widely used in Ayurvedic preparations against multiple disorders and contains various bioactive components. This study aimed to determine the preventive effect of on obesity by evaluating the inhibition of adipogenesis and the related regulatory epigenetic mechanisms during 3T3-L1 differentiation. The ethyl acetate fraction of (EFPE) effectively inhibited lipid accumulation and triglyceride (TG) production in 3T3-L1 adipocytes.
View Article and Find Full Text PDFJ Genet Genomics
January 2025
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China. Electronic address:
Chromatin modifications including histone acetylation play essential roles in regulating flowering. The CBP/p300 family HISTONE ACETYLTRANSFERASE 1 (HAC1), which mediates histone acetylation, promotes the process of floral transition; however, the precise mechanism remains largely unclear. Specifically, how HAC1 is involved in the flowering regulatory network and which genes are the direct targets of HAC1 during flowering regulation are still unknown.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Biochemistry, Indian Institute of Science, Bangalore 560012, INDIA. Electronic address:
The zinc finger transcription factor Mxr1 (methanol expression regulator 1) of the methylotrophic yeast Komagataella phaffii (formerly Pichia pastoris) harbors a DNA-binding domain (DBD) consisting of two CH zinc fingers (Mxr1ZF) between amino acids 36-101 and a previously identified nine amino acid transactivation domain (9aaTAD) between residues 365-373 (TAD A, QELESSLNA). Beyond this, 21 putative 9aaTADs (designated TAD B-V) located between amino acids 401-1155 remain to be characterized. Here, we demonstrate that a compact synthetic transcription factor composed of Mxr1ZF and three tandem copies of TAD A can activate the transcription of Mxr1 target genes for ethanol and methanol metabolism with specificity and efficiency comparable to the full-length protein.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
Enhanced environmental stress tolerance is important for microbial production of biofuels and biobased chemicals. However, the roles of chromatin regulation in stress tolerance and bioproduction remain unclear. Here, we explore the effects of Ino80, the core subunit of the INO80 chromatin remodeling complex, on yeast stress adaptation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!