C8-Aryl purines, their nucleosides, and phosphoramidites has been synthetic targets for more than 60 years. Interest in these compounds stems from their utility as fluorescent markers, they have therapeutic uses, are biomarkers, biomolecular probes, supramolecular building blocks, and for conformational studies. Until recently, the selective arylation of the C8-position of purines has been a challenging task. Several approaches have been explored including building them up from a pyrimidine or selective C8-modification of an unsubstituted purine. Neither of these approaches has proven to have broad scope. The discovery that C8-aryl purine nucleosides can be made via the Suzuki cross-coupling reaction has allowed a diverse array of analogues to be prepared and, in turn, the corresponding phosphoramidites. The latter is particularly significant as C8-aryl purine adducts are a major mutation observed from aromatic carcinogens and ready access to C8-aryl phosphoramidites will facilitate the synthesis and study of C8-aryl purine biomarkers and modified oligonucleotides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1615/critreveukargeneexpr.v21.i2.50 | DOI Listing |
Chem Res Toxicol
February 2020
Department of Chemistry and Biochemistry , University of Lethbridge, Lethbridge , Alberta T1K 3M4 , Canada.
Nitroaromatic compounds represent a major class of industrial chemicals that are also found in nature. Polycyclic derivatives are regarded as potent mutagens and carcinogens following bioactivation to produce nitrenium electrophiles that covalently modify DNA to afford N-linked C8-2'-deoxyguanosine (C8-dG) lesions that can induce frameshift mutations, especially in CpG repeat sequences. In contrast, their monocyclic counterparts typically exhibit weak mutagenicity or a lack thereof, despite also undergoing bioactivation to afford N-linked C8-dG adducts.
View Article and Find Full Text PDFChem Res Toxicol
January 2018
Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
Aromatic chemical carcinogens can undergo enzymatic transformations to produce a range of electrophilic species that attach covalently to the C8-site of 2'-deoxyguanosine (dG) to afford C8-dG adducts. The most studied C8-dG adducts are formed from arylamines and contain a N-linkage separating the dG from the C8-aryl moiety. Other carcinogenic species result in direct aryl ring attachment to the dG moiety, resulting in C-linked adducts.
View Article and Find Full Text PDFJ Agric Food Chem
August 2017
Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4.
Ochratoxin A (OTA) is a fungal toxin that is considered to be a potent kidney carcinogen in rodent models. The toxin produces double strand breaks and has a propensity for deletions, single-base substitutions, and insertions. The toxin reacts covalently with DNA to afford a C8-2'-deoxyguanosine carbon-linked adduct (OT-dG) as the major lesion in animal tissues.
View Article and Find Full Text PDFEur J Med Chem
July 2017
Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India. Electronic address:
Adenosine induces bronchial hyperresponsiveness and inflammation in asthmatics through activation of A adenosine receptor (AAdoR). Selective antagonists have been shown to attenuate airway reactivity and improve inflammatory conditions in pre-clinical studies. Hence, the identification of novel, potent and selective AAdoR antagonist may be beneficial for the potential treatment of asthma and Chronic Obstructive Pulmonary Disease (COPD).
View Article and Find Full Text PDFChem Res Toxicol
August 2015
†Department of Chemistry and Toxicology, University of Guelph, Guelph, ON Canada N1G 2W1.
Aryl radicals can react at the C8-site of 2'-deoxyguanosine (dG) to produce DNA adducts with a C8-C linkage (denoted C-linked). Such adducts are structurally distinct from those possessing a flexible amine (N-linked) or ether (O-linked) linkage, which separates the C8-aryl moiety from the guanine nucleobase. In the current study, two model C-linked C8-dG adducts, namely, C8-benzo[b]thienyl-dG ([BTh]G) and C8-(pyren-1-yl)-dG ([Py]G), were incorporated into the NarI (12mer, NarI(12) and 22mer, NarI(22)) hotspot sequence for frameshift mutations in bacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!