By means of different genetic association studies the SOST gene, encoding sclerostin, has repeatedly been suggested to regulate bone mineral density (BMD) and osteoporosis susceptibility. This study aimed at a further understanding of the importance of two previously studied single-nucleotide polymorphisms in the SOST gene, rs10534024 (SRP3) and rs9902563 (SRP9), in the Odense Androgen Study (OAS) cohort. This cohort includes a total of 1,383 Danish men from two different age groups, 20-29 years (n = 783) and 60-74 years (n = 600), and is well characterized. Subjects were phenotyped for BMD at several sites and additionally for body composition and hip geometric parameters. In a combined analysis of the young and the elderly OAS, no associations were found for SRP3 either with BMD or with hip geometry. Instead, we found that this polymorphism had a relatively large effect on weight (-1.149 kg) and body mass index (-0.389 kg/m(2)) (P = 0.021 and 0.006 under a codominant model). For SRP9, a significant association was found for femoral neck BMD (+0.020 g/cm(2), P = 0.020) and a trend toward significance for hip geometry (buckling ratio of the narrow neck) but only when considering a recessive effect of the minor allele (C). No age-specific effects were found for either of the two SNPs. In summary, we are the first to find interesting associations between SRP3 and body composition. For SRP9, we replicated a site-specific association with femoral neck BMD. In addition, we report a novel association for this polymorphism with hip geometry.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00223-011-9546-5DOI Listing

Publication Analysis

Top Keywords

sost gene
12
body composition
12
hip geometry
12
polymorphisms sost
8
young elderly
8
odense androgen
8
androgen study
8
associations srp3
8
association femoral
8
femoral neck
8

Similar Publications

Sclerostin as a new target of diabetes-induced osteoporosis.

Front Endocrinol (Lausanne)

December 2024

Department of Endocrinology and Metabolism, Want Want Hospital, Changsha, Hunan, China.

Sclerostin, a protein synthesized by bone cells, is a product of the gene. Sclerostin is a potent soluble inhibitor of the WNT signaling pathway, and is known to inhibit bone formation by inhibiting osteocyte differentiation and function. Currently, sclerostin has been the subject of numerous animal experiments and clinical investigations.

View Article and Find Full Text PDF

This study explores how select microRNAs (miRNAs) influence bone structure in humans and in transgenic mice. In trabecular bone biopsies from 84 postmenopausal women (healthy, osteopenic, and osteoporotic), we demonstrate that (deleted in lymphocytic leukemia 2)-encoded is strongly positively associated with bone mineral density (BMD) at different skeletal sites. In bone transcriptome analyses, levels correlated positively with the osteocyte characteristic transcripts (encoding sclerostin) and (Matrix Extracellular Phosphoglycoprotein), while the related showed a negative association with BMD and osteoblast markers.

View Article and Find Full Text PDF

Stiffening symphony of aging: Biophysical changes in senescent osteocytes.

Aging Cell

December 2024

Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.

Senescent osteocytes are key contributors to age-related bone loss and fragility; however, the impact of mechanobiological changes in these cells remains poorly understood. This study provides a novel analysis of these changes in primary osteocytes following irradiation-induced senescence. By integrating subcellular mechanical measurements with gene expression analyses, we identified significant, time-dependent alterations in the mechanical properties of senescent bone cells.

View Article and Find Full Text PDF

Application of hydrostatic pressure up-regulates sost gene expression in osteocytic spheroids.

Biosci Biotechnol Biochem

November 2024

Department of Mechanical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.

In this study, we developed a hydrostatic pressurizing chamber capable of applying hydrostatic pressure to osteocytic spheroids derived from mouse osteoblastic MC3T3-E1 cells. Our results demonstrate that a 4-hour exposure to 200 kPa of hydrostatic pressure did not alter the apparent morphology of the spheroids. However, gene expression analysis revealed a significant up-regulation of Sost, marker of late-stage osteocyte differentiation.

View Article and Find Full Text PDF

This study investigates the effects of microgravity on the differentiation and mineralization of IDG-SW3 osteocyte-like cells to understand the response of bone cells to microgravity and develop strategies to mitigate bone loss in astronauts. IDG-SW3 cells were cultured in collagen-coated dishes and subjected to a 3D clinostat to simulate microgravity 14 days after initiating differentiation. The static group remained under normal gravity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!