This paper investigates fault diagnosis in batch processes and presents a comparative study of feature extraction and classification techniques applied to a specific biotechnological case study: the fermentation process model by Birol et al. (Comput Chem Eng 26:1553-1565, 2002), which is a benchmark for advanced batch processes monitoring, diagnosis and control. Fault diagnosis is achieved using four approaches on four different process scenarios based on the different levels of noise so as to evaluate their effects on the performance. Each approach combines a feature extraction method, either multi-way principal component analysis (MPCA) or multi-way independent component analysis (MICA), with a classification method, either artificial neural network (ANN) or support vector machines (SVM). The performance obtained by the different approaches is assessed and discussed for a set of simulated faults under different scenarios. One of the faults (a loss in mixing power) could not be detected due to the minimal effect of mixing on the simulated data. The remaining faults could be easily diagnosed and the subsequent discussion provides practical insight into the selection and use of the available techniques to specific applications. Irrespective of the classification algorithm, MPCA renders better results than MICA, hence the diagnosis performance proves to be more sensitive to the selection of the feature extraction technique.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-011-0649-1DOI Listing

Publication Analysis

Top Keywords

feature extraction
16
fault diagnosis
12
fermentation process
8
comparative study
8
study feature
8
extraction classification
8
classification techniques
8
batch processes
8
component analysis
8
diagnosis benchmark
4

Similar Publications

Background: Chronic obstructive pulmonary disease (COPD) affects breathing, speech production, and coughing. We evaluated a machine learning analysis of speech for classifying the disease severity of COPD.

Methods: In this single centre study, non-consecutive COPD patients were prospectively recruited for comparing their speech characteristics during and after an acute COPD exacerbation.

View Article and Find Full Text PDF

Purpose: A promising feature of marine sponges is the potential anticancer efficacy of their secondary metabolites. The objective of this study was to explore the anticancer activities of compounds from the fungal symbiont of on breast cancer cells.

Methods: In the present research, , an endophytic fungal strain derived from the marine sponge was successfully isolated and characterized.

View Article and Find Full Text PDF

Lightweight Retinal Layer Segmentation With Global Reasoning.

IEEE Trans Instrum Meas

May 2024

School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China.

Automatic retinal layer segmentation with medical images, such as optical coherence tomography (OCT) images, serves as an important tool for diagnosing ophthalmic diseases. However, it is challenging to achieve accurate segmentation due to low contrast and blood flow noises presented in the images. In addition, the algorithm should be light-weight to be deployed for practical clinical applications.

View Article and Find Full Text PDF

Hippocampal Functional Radiomic Features for Identification of the Cognitively Impaired Patients from Low-Back-Related Pain: A Prospective Machine Learning Study.

J Pain Res

January 2025

Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.

Purpose: To investigate whether functional radiomic features in bilateral hippocampi can identify the cognitively impaired patients from low-back-related leg pain (LBLP).

Patients And Methods: For this retrospective study, a total of 95 clinically definite LBLP patients (40 cognitively impaired patients and 45 cognitively preserved patients) were included, and all patients underwent functional MRI and clinical assessments. After calculating the amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), voxel-mirrored homotopic connectivity (VMHC) and degree centrality (DC) imaging, the radiomic features (n = 819) of bilateral hippocampi were extracted from these images, respectively.

View Article and Find Full Text PDF

Introduction: As a hallmark feature of amyotrophic lateral sclerosis (ALS), bulbar involvement significantly impacts psychosocial, emotional, and physical health. A validated objective marker is however lacking to characterize and phenotype bulbar involvement, positing a major barrier to early detection, progress monitoring, and tailored care. This study aimed to bridge this gap by constructing a multiplex functional mandibular muscle network to provide a novel objective measurement tool of bulbar involvement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!