The role of disease in the long-term dynamics of threatened species is poorly quantified, as well as being under-represented in ecology and conservation management. To understand persistent host-pathogen interaction operating in a vulnerable habitat, we quantified dynamics driving patterns of seagrass density using a longitudinal study in a relatively pristine site (Isles of Scilly, UK). Replicated samples of eelgrass (Zostera marina) density and wasting disease prevalence, presumably caused by Labyrinthula zosterae, were taken from five meadows at the height of the growing season, over the years 1997-2010. Data were used to parameterise a population dynamic model, incorporating density-dependent factors and sea temperature records. We found that direct density and disease-mediated feedback operate within a network of local populations. Furthermore, our results indicate that the strength of limitation to seagrass growth by disease was increased at higher temperatures. This modification of the coupled host-pathogen dynamics forms a novel hypothesis to account for dramatic die-backs of Z. marina widely reported elsewhere. Our findings highlight the importance of disease in structuring distributions of vulnerable species, as well as the application of population modelling in order to reveal ecological processes and prioritize future mechanistic investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-011-2187-6DOI Listing

Publication Analysis

Top Keywords

wasting disease
8
dynamics threatened
8
disease regulates
4
regulates long-term
4
long-term population
4
dynamics
4
population dynamics
4
threatened seagrass
4
seagrass role
4
disease
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!