Image reconstruction in fluorescence optical tomography is a three-dimensional nonlinear ill-posed problem governed by a system of partial differential equations. In this paper we demonstrate that a combination of state of the art numerical algorithms and a careful hardware optimized implementation allows to solve this large-scale inverse problem in a few seconds on standard desktop PCs with modern graphics hardware. In particular, we present methods to solve not only the forward but also the non-linear inverse problem by massively parallel programming on graphics processors. A comparison of optimized CPU and GPU implementations shows that the reconstruction can be accelerated by factors of about 15 through the use of the graphics hardware without compromising the accuracy in the reconstructed images.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3207387PMC
http://dx.doi.org/10.1364/BOE.2.003207DOI Listing

Publication Analysis

Top Keywords

graphics hardware
12
image reconstruction
8
reconstruction fluorescence
8
inverse problem
8
high-performance image
4
fluorescence tomography
4
tomography desktop
4
desktop computers
4
graphics
4
computers graphics
4

Similar Publications

Background: High-throughput behavioral analysis is important for drug discovery, toxicological studies, and the modeling of neurological disorders such as autism and epilepsy. Zebrafish embryos and larvae are ideal for such applications because they are spawned in large clutches, develop rapidly, feature a relatively simple nervous system, and have orthologs to many human disease genes. However, existing software for video-based behavioral analysis can be incompatible with recordings that contain dynamic backgrounds or foreign objects, lack support for multiwell formats, require expensive hardware, and/or demand considerable programming expertise.

View Article and Find Full Text PDF

This study first proposes an innovative method for optimizing the maximum power extraction from photovoltaic (PV) systems during dynamic and static environmental conditions (DSEC) by applying the horse herd optimization algorithm (HHOA). The HHOA is a bio-inspired technique that mimics the motion cycles of an entire herd of horses. Next, the linear active disturbance rejection control (LADRC) was applied to monitor the HHOA's reference voltage output.

View Article and Find Full Text PDF

Posttraining Network Compression for 3D Medical Image Segmentation: Reducing Computational Efforts via Tucker Decomposition.

Radiol Artif Intell

January 2025

From the Department of Radiology, University Hospital, LMU Munich, Marchioninistr 15,81377 Munich, Germany (T.W., J.D., M.I.); Department of Statistics, LMU Munich, Munich, Germany (T.W., D.R.); and Munich Center for Machine Learning, Munich, Germany (T.W., J.D., D.R., M.I.).

Purpose To investigate whether the computational effort of 3D CT-based multiorgan segmentation with TotalSegmentator can be reduced via Tucker decomposition-based network compression. Materials and Methods In this retrospective study, Tucker decomposition was applied to the convolutional kernels of the TotalSegmentator model, an nnU-Net model trained on a comprehensive CT dataset for automatic segmentation of 117 anatomic structures. The proposed approach reduced the floating-point operations (FLOPs) and memory required during inference, offering an adjustable trade-off between computational efficiency and segmentation quality.

View Article and Find Full Text PDF

Motivation: Predicting RNA-binding proteins (RBPs) is central to understanding post-transcriptional regulatory mechanisms. Here, we introduce EnrichRBP, an automated and interpretable computational platform specifically designed for the comprehensive analysis of RBP interactions with RNA.

Results: EnrichRBP is a web service that enables researchers to develop original deep learning and machine learning architectures to explore the complex dynamics of RNA-binding proteins.

View Article and Find Full Text PDF

An Analysis of Components and Enhancement Strategies for Advancing Memristive Neural Networks.

Adv Mater

January 2025

Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Seoul, 08826, Republic of Korea.

Advancements in artificial intelligence (AI) and big data have highlighted the limitations of traditional von Neumann architectures, such as excessive power consumption and limited performance improvement with increasing parameter numbers. These challenges are significant for edge devices requiring higher energy and area efficiency. Recently, many reports on memristor-based neural networks (Mem-NN) using resistive switching memory have shown efficient computing performance with a low power requirement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!