Aortic stiffness increases with age and vascular risk factor exposure and is associated with increased risk for structural and functional abnormalities in the brain. High ambient flow and low impedance are thought to sensitize the cerebral microcirculation to harmful effects of excessive pressure and flow pulsatility. However, haemodynamic mechanisms contributing to structural brain lesions and cognitive impairment in the presence of high aortic stiffness remain unclear. We hypothesized that disproportionate stiffening of the proximal aorta as compared with the carotid arteries reduces wave reflection at this important interface and thereby facilitates transmission of excessive pulsatile energy into the cerebral microcirculation, leading to microvascular damage and impaired function. To assess this hypothesis, we evaluated carotid pressure and flow, carotid-femoral pulse wave velocity, brain magnetic resonance images and cognitive scores in participants in the community-based Age, Gene/Environment Susceptibility--Reykjavik study who had no history of stroke, transient ischaemic attack or dementia (n = 668, 378 females, 69-93 years of age). Aortic characteristic impedance was assessed in a random subset (n = 422) and the reflection coefficient at the aorta-carotid interface was computed. Carotid flow pulsatility index was negatively related to the aorta-carotid reflection coefficient (R = -0.66, P<0.001). Carotid pulse pressure, pulsatility index and carotid-femoral pulse wave velocity were each associated with increased risk for silent subcortical infarcts (hazard ratios of 1.62-1.71 per standard deviation, P<0.002). Carotid-femoral pulse wave velocity was associated with higher white matter hyperintensity volume (0.108 ± 0.045 SD/SD, P = 0.018). Pulsatility index was associated with lower whole brain (-0.127 ± 0.037 SD/SD, P<0.001), grey matter (-0.079 ± 0.038 SD/SD, P = 0.038) and white matter (-0.128 ± 0.039 SD/SD, P<0.001) volumes. Carotid-femoral pulse wave velocity (-0.095 ± 0.043 SD/SD, P = 0.028) and carotid pulse pressure (-0.114 ± 0.045 SD/SD, P = 0.013) were associated with lower memory scores. Pulsatility index was associated with lower memory scores (-0.165 ± 0.039 SD/SD, P<0.001), slower processing speed (-0.118 ± 0.033 SD/SD, P<0.001) and worse performance on tests assessing executive function (-0.155 ± 0.041 SD/SD, P<0.001). When magnetic resonance imaging measures (grey and white matter volumes, white matter hyperintensity volumes and prevalent subcortical infarcts) were included in cognitive models, haemodynamic associations were attenuated or no longer significant, consistent with the hypothesis that increased aortic stiffness and excessive flow pulsatility damage the microcirculation, leading to quantifiable tissue damage and reduced cognitive performance. Marked stiffening of the aorta is associated with reduced wave reflection at the interface between carotid and aorta, transmission of excessive flow pulsatility into the brain, microvascular structural brain damage and lower scores in various cognitive domains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3212721PMC
http://dx.doi.org/10.1093/brain/awr253DOI Listing

Publication Analysis

Top Keywords

pressure flow
12
flow pulsatility
12
age gene/environment
8
gene/environment susceptibility--reykjavik
8
susceptibility--reykjavik study
8
aortic stiffness
8
cerebral microcirculation
8
reflection coefficient
8
flow
5
arterial stiffness
4

Similar Publications

Objective: Elevated systolic blood pressure and increased pulse pressure are closely associated with renal damage; however, the exact mechanism remains unclear. Therefore, we investigated the effects of increased pulse pressure on tubulointerstitial fibrosis and renal damage in elderly rats with isolated systolic hypertension (ISH). Additionally, the role of renal tubular epithelial-mesenchymal transition (EMT) and its upstream signalling pathways were elucidated.

View Article and Find Full Text PDF

Background: Limited large-scale, real-world data exist on the prevalence and clinical impact of discordance between fractional flow reserve (FFR) and nonhyperemic pressure ratios (NHPRs).

Methods: The J-PRIDE registry (Clinical Outcomes of Japanese Patients With Coronary Artery Disease Assessed by Resting Indices and Fractional Flow Reserve: A Prospective Multicenter Registry) prospectively enrolled 4304 lesions in 3200 patients from 20 Japanese centers. The lesions were classified into FFR+/NHPR-, FFR-/NHPR+, FFR+/NHPR+, or FFR-/NHPR groups according to cutoff values of 0.

View Article and Find Full Text PDF

The Influence of Heart Rate on Peripheral Vascular Function Among Pacemaker Patients.

Int J Med Sci

January 2025

Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, MALAYSIA.

The finger photoplethysmography fitness index (PPGF), a marker of peripheral vascular function, has been linked to heart rate (HR) variability. However, the influence of acute HR changes on resting PPGF, a purported indicator of local blood flow, remains unclear. This study aimed to determine the influence of acute HR changes on resting PPGF.

View Article and Find Full Text PDF

Ectopic varices can result from portal vein stenosis following pancreaticoduodenectomy with concomitant portal vein resection reconstruction, and they can cause gastrointestinal bleeding. Although they can sometimes be fatal, various treatments have been reported. This report describes a case in which a percutaneous transhepatic approach was used to simultaneously perform variceal embolization and portal vein stenting in which a favorable outcome was achieved.

View Article and Find Full Text PDF

Processing and inspection of high-pressure microfluidics systems: A review.

Biomicrofluidics

January 2025

State Key Laboratory of Power Grid Environmental Protection, Wuhan, Hubei 430074, China.

In the field of microfluidics, high-pressure microfluidics technology, which utilizes high driving pressure for microfluidic analysis, is an evolving technology. This technology combines microfluidics and pressurization, where the flow of fluid is controlled by means of high-pressure-driven devices greater than 10 MPa. This paper first reviews the existing high-pressure microfluidics systems and describes their components and applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!