Dyskinesias represent a major complication of dopamine replacement therapy in Parkinson's disease (PD) and have prompted a search for alternative treatments. The most radical advances in this field have been provided by surgical manipulations of the deep basal ganglia nuclei, and particularly by deep brain stimulation (DBS) of the subthalamic nucleus (STN). Although being very effective, high-frequency stimulation (HFS) of the STN is a poorly understood treatment. Besides its anti-akinetic activity, it can be pro-dyskinetic above a certain stimulation intensity. Accumulating evidence indicates that dyskinesias induced by STN-HFS and dopamine replacement therapy are linked to dysregulation of glutamate transmission in the basal ganglia. In rat models of PD, both types of dyskinesia are associated with increased concentrations of extracellular glutamate and altered expression of glutamate transporters in the substantia nigra pars reticulata and the striatum. Furthermore, a vast and ever growing literature has revealed changes in the expression, phosphorylation state, and/or subcellular distribution of specific subtypes of glutamate receptors in these dyskinetic conditions. Both types of dyskinesias are linked to an increased phosphorylation of NR2B-containing NMDA receptors in critical basal ganglia circuits. We conclude that disruption of glutamate homeostasis and activation of perisynaptic and extra-synaptic glutamate receptors are an important pathophysiological component of these treatment-induced dyskinesias in PD. These findings lay the ground for therapeutic development initiatives targeting dysfunctional components of glutamate transmission in the basal ganglia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pneurobio.2011.10.005 | DOI Listing |
Neurol Ther
January 2025
Department of Medicine, North Tyneside General Hospital, Rake Lane, North Shields, NE29 8NH, UK.
This is an outline for a podcast. Parkinson's Disease (PD) is a progressive neurodegenerative disease in which there is increasing loss of dopamine neurones from the basal ganglia (Simon et al. Clin Geriatr Med.
View Article and Find Full Text PDFZhongguo Dang Dai Er Ke Za Zhi
January 2025
Department of Neurology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, China.
Objectives: To investigate the clinical characteristics and prognosis of infants and young children with basal ganglia infarction after minor head trauma (BGIMHT).
Methods: A retrospective analysis was conducted on the clinical data and follow-up results of children aged 28 days to 3 years with BGIMHT who were hospitalized at Children's Hospital of Soochow University from January 2011 to January 2022.
Results: A total of 45 cases of BGIMHT were included, with the most common symptom being limb movement disorders (96%, 43/45), followed by facioplegia (56%, 25/45).
J Neurointerv Surg
January 2025
Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
Background: Post-stroke epilepsy (PSE) is a major complication of stroke. However, data about the predictors of PSE in patients with acute ischemic stroke (AIS) undergoing mechanical thrombectomy are limited.
Objective: To evaluate the relationship between intraoperative angiographic signs and PSE risk in patients with anterior circulation AIS who underwent mechanical thrombectomy.
Sci Adv
January 2025
Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
The pathophysiology of neurodevelopmental disorders involves vulnerable neural populations, including striatal circuitry, and convergent molecular nodes, including chromatin regulation and synapse function. Despite this, how epigenetic regulation regulates striatal development is understudied. Recurrent de novo mutations in are associated with intellectual disability and autism.
View Article and Find Full Text PDFProg Rehabil Med
January 2025
Department of Rehabilitation Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan.
Objectives: Trunk control involves multiple brain regions related to motor control systems. Therefore, patients with central nervous system (CNS) disorders frequently exhibit impaired trunk control, decreasing their activities of daily living (ADL). Although some therapeutic interventions for trunk impairments have been effective, their general effects on CNS disorders remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!