The genome of the highly pathogenic Haemophilus parasuis Nagasaki strain (serovar 5) was sequenced to 99 % completion. A genomic comparison with two other pathogenic serovar 5 H. parasuis strains identified six genes per genome (bmaA1-bmaA6) encoding β-barrel monomeric autotransporters, bmaA2 and bmaA3 being pseudogenes in at least one strain. The remaining encoded proteins were predicted to belong to the subtilisin (BmaA1 and BmaA4) and cysteine (BmaA5 and BmaA6) protease families. Allelic polymorphism was detected in other H. parasuis strains by comparative genomic hybridization using microarrays. Recombination events were observed, some of them leading to gene disruption in one of the three strains, although synteny around bmaA genes was conserved. These results suggest that bmaA genes are undergoing a process of reductive evolution. To evaluate their use as potential vaccine antigens, the products of the passenger domains of bmaA1, bmaA4, bmaA5 and bmaA6 were produced in Escherichia coli as recombinant proteins. They were detected by immunoblotting using sera of colostrum-deprived piglets recovering from a sublethal infection with H. parasuis (Nagasaki). The existence of specific antibodies after infection with H. parasuis also demonstrated in vivo expression. Using proteomics, only BmaA6 was detected in the in vitro-grown Nagasaki strain. Interestingly, the translocator domain was found in the outer membrane, while the passenger domain was located in supernatants. These results indicate that BmaA proteins could be considered as immunogen candidates to improve H. parasuis vaccines. However, their capacity to confer protective immunity needs to be studied further.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.052399-0DOI Listing

Publication Analysis

Top Keywords

monomeric autotransporters
8
haemophilus parasuis
8
process reductive
8
reductive evolution
8
parasuis nagasaki
8
nagasaki strain
8
parasuis strains
8
bmaa1 bmaa4
8
bmaa5 bmaa6
8
bmaa genes
8

Similar Publications

Expressing red fluorescent protein on the surface of using C-terminal domain of autotransporters.

Mol Biol Res Commun

January 2025

Labolatory of Biosensors, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh city, Vietnam.

The Type V secretion system, or "autotransporter", is a secretion system that enables bacteria to directly export proteins from the cell interior to the extracellular membrane. mCherry is a second-generation monomeric red fluorescent protein that has an improvement in photostability compared to the first generation of RFP. In this research, we conducted the fusion of the mRFP into the C-terminal domain of EhaA - the translocation domain of the autotransporter protein transport system - to investigate the expression of mRFP on the surface of a model organism commonly utilized in recombinant protein research.

View Article and Find Full Text PDF

Spotted fever group Rickettsia undergo actin-based motility inside infected eukaryotic cells using Sca2 (surface cell antigen 2): an ∼ 1800 amino-acid monomeric autotransporter protein that is surface-attached to the bacterium and responsible for the assembly of long unbranched actin tails. Sca2 is the only known functional mimic of eukaryotic formins, yet it shares no sequence similarities to the latter. Using structural and biochemical approaches we have previously shown that Sca2 uses a novel actin assembly mechanism.

View Article and Find Full Text PDF

Overproducing the BAM complex improves secretion of difficult-to-secrete recombinant autotransporter chimeras.

Microb Cell Fact

September 2021

Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Monomeric autotransporters have been used extensively to transport recombinant proteins or protein domains to the cell surface of Gram-negative bacteria amongst others for antigen display. Genetic fusion of such antigens into autotransporters has yielded chimeras that can be used for vaccination purposes. However, not every fusion construct is transported efficiently across the cell envelope.

View Article and Find Full Text PDF

are Gram-negative, obligate intracellular bacteria, which infect animals and humans. Adhesion to host cells, the first step in the infection process, is mediated by polymorphic membrane proteins (Pmps). Pmps constitute the largest chlamydial protein family, with 9 members (subdivided into six subtypes) in and 21 in , and are characterized by the presence of multiple copies of GGA(I,L,V) and FxxN motifs.

View Article and Find Full Text PDF

Adhesins of : Their Roles in the Interaction with the Host.

Pathogens

November 2020

Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires 1405, Argentina.

A central aspect of pathogenicity is its ability to invade, survive, and replicate in diverse phagocytic and non-phagocytic cell types, leading to chronic infections and chronic inflammatory phenomena. Adhesion to the target cell is a critical first step in the invasion process. Several adhesins have been shown to mediate adhesion to cells, extracellular matrix components (ECM), or both.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!