AI Article Synopsis

  • Nitrogen metabolism in bacteria and archaea is controlled by P(II) proteins, which sense nitrogen, carbon, and energy levels and regulate target proteins through interactions.
  • In the bacterium Azospirillum brasilense, high ammonium levels lead to the inactivation of the nitrogenase regulator DraG by relocating it to the cell membrane, facilitated by a complex involving the P(II) protein GlnZ and the ammonia channel AmtB.
  • The study reveals the crystal structure of the GlnZ-DraG complex and proposes a new interaction model that allows P(II) proteins to connect with multiple targets, providing insights into how ATP, ADP, and 2-oxoglutarate levels influence these interactions.

Article Abstract

Nitrogen metabolism in bacteria and archaea is regulated by a ubiquitous class of proteins belonging to the P(II)family. P(II) proteins act as sensors of cellular nitrogen, carbon, and energy levels, and they control the activities of a wide range of target proteins by protein-protein interaction. The sensing mechanism relies on conformational changes induced by the binding of small molecules to P(II) and also by P(II) posttranslational modifications. In the diazotrophic bacterium Azospirillum brasilense, high levels of extracellular ammonium inactivate the nitrogenase regulatory enzyme DraG by relocalizing it from the cytoplasm to the cell membrane. Membrane localization of DraG occurs through the formation of a ternary complex in which the P(II) protein GlnZ interacts simultaneously with DraG and the ammonia channel AmtB. Here we describe the crystal structure of the GlnZ-DraG complex at 2.1 Å resolution, and confirm the physiological relevance of the structural data by site-directed mutagenesis. In contrast to other known P(II) complexes, the majority of contacts with the target protein do not involve the T-loop region of P(II). Hence this structure identifies a different mode of P(II) interaction with a target protein and demonstrates the potential for P(II) proteins to interact simultaneously with two different targets. A structural model of the AmtB-GlnZ-DraG ternary complex is presented. The results explain how the intracellular levels of ATP, ADP, and 2-oxoglutarate regulate the interaction between these three proteins and how DraG discriminates GlnZ from its close paralogue GlnB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3223478PMC
http://dx.doi.org/10.1073/pnas.1108038108DOI Listing

Publication Analysis

Top Keywords

crystal structure
8
structure glnz-drag
8
glnz-drag complex
8
pii
8
pii proteins
8
ternary complex
8
target protein
8
proteins
5
complex
4
complex reveals
4

Similar Publications

Rhizobium etli is a nitrogen-fixing bacterium that encodes two l-asparaginases. The structure of the inducible R. etli asparaginase ReAV has been recently determined to reveal a protein with no similarity to known enzymes with l-asparaginase activity, but showing a curious resemblance to glutaminases and β-lactamases.

View Article and Find Full Text PDF

Because of its dimensional characteristics, two-dimensional (2D) materials exhibit many special properties. The key to researching their features is to prepare high-quality larger-area monolayer 2D materials. Metal-assisted mechanical exfoliation method offers the possibility.

View Article and Find Full Text PDF

Dienia is a small, pantropical genus of epidendroid Malaxideae orchids. The floral lip is upwardly directed and does not serve as a landing platform for pollinators. This role has been assumed by sepals and/or gynostemium or whole inflorescence.

View Article and Find Full Text PDF

Compounds containing the piperidine group are highly attractive as building blocks for designing new drugs. Functionalized piperidines are of significant interest due to their prevalence in the pharmaceutical field. Herein, 3-oxo-3-(piperidin-1-yl) propanenitrile has been synthesized, and piperidine-based sodium alginate/poly(vinyl alcohol) films have been prepared.

View Article and Find Full Text PDF

Cancer and microbial infections place a significant burden on the world's health systems and can increase the rate of disease and mortality. In the current study, a novel nanocomposite based on Gum Arabic, silver and copper oxide nanoparticles (GA@Ag-CuO nanocomposite) was synthesized to overcome the problem of microbial infection and in cancer treatment. Characterization using UV-Vis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!