MGOS: development of a community annotation database for Magnaporthe oryzae.

Mol Plant Microbe Interact

School of Plant Sciences, Division of Plant Pathology and Microbiology, The University of Arizona, Tucson 85721, USA.

Published: March 2012

AI Article Synopsis

  • Magnaporthe oryzae is the cause of rice blast disease, the most severe disease affecting cultivated rice globally.
  • The MGOS database, originally created for the M. oryzae and rice genome sequences, has been redesigned to include international research data and offers an improved, user-friendly interface.
  • Over 900 genes have been curated in the MGOS database, which now serves as a comprehensive resource for genetic and functional information on this significant rice pathogen.

Article Abstract

Magnaporthe oryzae causes rice blast disease, which is the most serious disease of cultivated rice worldwide. We previously developed the Magnaporthe grisea-Orzya sativa (MGOS) database as a repository for the M. oryzae and rice genome sequences together with a comprehensive set of functional interaction data generated by a major consortium of U.S. researchers. The MGOS database has now undergone a major redesign to include data from the international blast research community, accessible with a new intuitive, easy-to-use interface. Registered database users can manually annotate gene sequences and features as well as add mutant data and literature on individual gene pages. Over 900 genes have been manually curated based on various biological databases and the scientific literature. Gene names and descriptions, gene ontology annotations, published and unpublished information on mutants and their phenotypes, responses in diverse microarray analyses, and related literature have been incorporated. Thus far, 362 M. oryzae genes have associated information on mutants. MGOS is now poised to become a one-stop repository for all structural and functional data available on all genes of this critically important rice pathogen.

Download full-text PDF

Source
http://dx.doi.org/10.1094/MPMI-07-11-0183DOI Listing

Publication Analysis

Top Keywords

magnaporthe oryzae
8
oryzae rice
8
mgos database
8
mgos
4
mgos development
4
development community
4
community annotation
4
database
4
annotation database
4
database magnaporthe
4

Similar Publications

A PRA-Rab trafficking machinery modulates NLR immune receptor plasma membrane microdomain anchoring and blast resistance in rice.

Sci Bull (Beijing)

December 2024

CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100039, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China. Electronic address:

Nucleotide-binding leucine-rich repeat (NLR) receptors mediate pathogen effector-triggered immunity (ETI) in plants, and a subclass of NLRs are hypothesized to function at the plasma membrane (PM). However, how NLR traffic and PM delivery are regulated during immune responses remains largely unknown. The rice NLR PigmR confers broad-spectrum resistance to the blast fungus Magnaporthe oryzae.

View Article and Find Full Text PDF

Background: Rice is the main food crop for much of the population in China. Therefore, selecting and breeding new disease resistance and drought tolerance in rice is essential to ensure national food security. The utilization of heterosis has significantly enhanced rice productivity, yet many of the molecular mechanisms underlying this phenomenon remain largely unexplored.

View Article and Find Full Text PDF

Molecular basis for loss of virulence in strain AM16.

Front Plant Sci

December 2024

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.

The rapid virulence variation of () to rice is a big challenge for rice blast control. Even though many studies have been done by scientists all over the world, the mechanism of virulence variation in remains elusive. AM16, an avirulent strain reported in our previous study, provides an excellent entry point to explore the mechanism of virulence variation in .

View Article and Find Full Text PDF

Blast disease caused by is a devastating disease that limits rice grain production. Here, we synthesized rhamnolipid (RL) modified silica nanoparticles (SiONPs) based on the excellent antimicrobial activity of RL against various phytopathogens and the role of SiONPs in alleviating plant diseases and investigated the roles and mechanisms of RL@SiONPs application in controlling rice blast disease. Two-week-old rice seedlings were sprayed with 100 mL/L of different materials before pathogen inoculation, and blast incidence was investigated 5 days after inoculation.

View Article and Find Full Text PDF

Background: Rice blast caused by Pyricularia oryzae is a major threat to rice production worldwide. Tainung 84 (TNG84) is an elite japonica rice cultivar developed through the traditional pedigree method. It has maintained superior blast resistance since its release in 2010.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!