Dissecting T-cell activation with high-resolution live-cell microscopy.

Immunology

Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.

Published: March 2012

Results from live-cell microscopy suggest that the behaviour of isolated components of the T-cell activation machinery in vitro does not represent the reality inside cells. Understanding the cellular-scale dynamics of microcluster migration can only be accomplished by in situ observation. Developments in 'super-resolution' microscopy have permitted investigators to move beyond tracking the movements of individual molecules, allowing the recognition of protein islands and nanodomains present in quiescent and active T cells. Many high-resolution techniques have their own susceptibilities to artefacts, so it is important to take a multifaceted approach to confirm results. A major challenge for the future will be to integrate all the new information into a coherent model of antigen recognition and T-cell activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3311042PMC
http://dx.doi.org/10.1111/j.1365-2567.2011.03537.xDOI Listing

Publication Analysis

Top Keywords

t-cell activation
12
live-cell microscopy
8
dissecting t-cell
4
activation high-resolution
4
high-resolution live-cell
4
microscopy live-cell
4
microscopy behaviour
4
behaviour isolated
4
isolated components
4
components t-cell
4

Similar Publications

GITRL enhances cytotoxicity and persistence of CAR-T cells in cancer therapy.

Mol Ther

January 2025

Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China, 200241. Electronic address:

CAR T-cell therapy has achieved remarkable clinical success in treating hematological malignancies. However, its clinical efficacy in solid tumors is less satisfactory, partially due to poor in vivo expansion and limited persistence of CAR-T cells. Here, we demonstrated that the overexpression of glucocorticoid-induced tumor necrosis factor receptor-related protein ligand (GITRL) enhances the anti-tumor activity of CAR-T cells.

View Article and Find Full Text PDF

The involvement of B lymphocytes in the pathogenesis of rheumatoid arthritis (RA) is well-established, with their early and aberrant activation being a crucial factor. However, the mechanisms underlying this abnormal activation in RA remain incompletely understood. In this study, we identified a significant reduction in MAPK4 expression in both RA patients and collagen-induced arthritis (CIA) mouse models, which correlates with disrupted B cell activation.

View Article and Find Full Text PDF

Aim: Regulatory T cells (Tregs) play a crucial role in the development and progression of atherosclerosis. However, the specific association between Treg immune traits and atherosclerosis and related cardiovascular diseases remains unclear, impeding their potential for clinical therapeutic application.

Method: Fifty-eight Treg-related immune traits were obtained from the latest summary level genome-wide association study, which included 3,757 individuals from Sardinia.

View Article and Find Full Text PDF

Human cancer cells xenografts to assess the efficacy of granulysin-based therapeutics.

Methods Cell Biol

January 2025

Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain. Electronic address:

9-kDa Granulysin is a protein present in the granules of human activated cytotoxic T lymphocytes and natural killer cells. It has been shown to exert cytolytic activity against a wide variety of microbes: bacteria, fungi, yeast and protozoa. Recombinant isolated granulysin is also capable of inducing tumor cell death, so it could be used as an anti-tumor therapy.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a leading cause of cancer death that has limited treatment options for advanced stages. Although PD-1 inhibitors such as nivolumab and pembrolizumab have been approved for advanced HCC treatment, their effectiveness is often hampered by the immunosuppressive tumor microenvironment (TME), which is due to hypoxia-driven CXCL12/CXCR4 axis activation. In this study, we developed 807-NPs, lipid-coated tannic acid (TA) nanoparticles that encapsulate BPRCX807, a potent CXCR4 antagonist to target HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!