Microemulsions are often used in the synthesis of nanoparticles in solution. In this work, we put forward the concept of a "hard microemulsion", which is based on the differential partitioning of water and ethanol solvent molecules inside functional polymer matrices. When the mixture of water and organic solvent enters the functional polymer, the liquid molecules should partition to different regions. Water should concentrate in the microdomains rich in hydrophilic functional groups, forming water-enriched cores, whereas organic solvents should localize near the alkyl polymer skeleton, forming organic liquid enriched outer layers. From a macroscopic view, the swollen polymer matrix is divided into numerous "microdroplets", resembling frozen water-in-oil microemulsions. We define such a structure as a "hard microemulsion". The water-enriched microdroplets may act as templates for synthesizing inorganic nanoparticles. We demonstrate the utility of hard microemulsions for the controllable synthesis of silver and platinum nanoparticles inside different macroreticular functional polymers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la202619e | DOI Listing |
Langmuir
January 2012
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Microemulsions are often used in the synthesis of nanoparticles in solution. In this work, we put forward the concept of a "hard microemulsion", which is based on the differential partitioning of water and ethanol solvent molecules inside functional polymer matrices. When the mixture of water and organic solvent enters the functional polymer, the liquid molecules should partition to different regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!