The statistics of bulk segregant analysis using next generation sequencing.

PLoS Comput Biol

Department of Biology and IGSP Center for Systems Biology, Duke University, Durham, North Carolina, United States of America.

Published: November 2011

We describe a statistical framework for QTL mapping using bulk segregant analysis (BSA) based on high throughput, short-read sequencing. Our proposed approach is based on a smoothed version of the standard G statistic, and takes into account variation in allele frequency estimates due to sampling of segregants to form bulks as well as variation introduced during the sequencing of bulks. Using simulation, we explore the impact of key experimental variables such as bulk size and sequencing coverage on the ability to detect QTLs. Counterintuitively, we find that relatively large bulks maximize the power to detect QTLs even though this implies weaker selection and less extreme allele frequency differences. Our simulation studies suggest that with large bulks and sufficient sequencing depth, the methods we propose can be used to detect even weak effect QTLs and we demonstrate the utility of this framework by application to a BSA experiment in the budding yeast Saccharomyces cerevisiae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3207950PMC
http://dx.doi.org/10.1371/journal.pcbi.1002255DOI Listing

Publication Analysis

Top Keywords

bulk segregant
8
segregant analysis
8
allele frequency
8
detect qtls
8
large bulks
8
sequencing
5
statistics bulk
4
analysis generation
4
generation sequencing
4
sequencing describe
4

Similar Publications

Unlabelled: Increasing planting density is one of the most important strategies for generating higher maize yields. Moderate leaf rolling decreases mutual shading of leaves and increases the photosynthesis of the population and hence increases the tolerance for high-density planting. Few genes that control leaf rolling in maize have been identified, however, and their applicability for breeding programs remains unclear.

View Article and Find Full Text PDF

Worldwide, congenital deafness and pigmentation disorders impact millions with their diverse manifestations, and among these genetic conditions, mutations in the Microphthalmia-associated transcription factor (MITF: OMIM#156845) gene are notable for their profound effects on melanocyte development and auditory functions. This study reports a novel porcupine model exhibiting spontaneous deafness and pigmentation abnormalities reminiscent of human Waardenburg Syndrome Type 2 (WS2: OMIM#193510). Through phenotypic characterization, including coat color, skin, eye morphology, and auditory brainstem response (ABR) assessments, we identified hypopigmentation and complete deafness in mutant porcupines.

View Article and Find Full Text PDF

Tuning the nanostructure and tribological properties of a non-ionic deep eutectic solvent with water addition.

J Colloid Interface Sci

December 2024

School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia. Electronic address:

Hypothesis: The addition of water to a non-ionic N-oxide deep eutectic solvent(DES) composed of phenylacetic acid (PhAA) and N-dodecylmorpholine-N-oxide(MO-12) in a 1:1 M ratio(PhAA/MO-12) will promote interfacial nanostructure formation due to increased proton transfer and solvophobic interactions, leading to reduced friction.

Experiments: The interfacial structure and friction of PhAA/MO-12 with water content up to 41.9 wt% were investigated at mica surfaces.

View Article and Find Full Text PDF

Introduction: is a major oilseed crop of . The seed weight is one of yield components in oilseed crops. Research on the genetic mechanism of seed weight is not only directly related to the yield and economic value of Brassica juncea but also can provide a theory foundation for studying other Brassica crops.

View Article and Find Full Text PDF

Carbon Nanotube-Based Segregated Thermoplastic Nanocomposites Structured via Electromagnetic Melt Processing.

ACS Omega

December 2024

Department of Chemical Engineering, University of Mississippi School of Engineering, University, Mississippi 38677, United States.

A cutting-edge method that uses electromagnetic (EM) energy for the melt processing of thermoplastic polymer nanocomposites (TPNCs) is reported. The properties and microstructures of TPNCs produced via the proposed EM-processing method and TPNCs via conventional heat processing are contrasted. The EM-processed TPNCs prepared with EM-susceptible carbon nanotubes (CNTs) exhibited a significant enhancement in transport and mechanical properties, outperforming the conventionally processed TPNCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!