Context: Anaplastic thyroid tumors (ATC) express high levels of BAG3, a member of the BAG family of cochaperone proteins that is involved in regulating cell apoptosis through multiple mechanisms.

Objective: The objective of the study was the investigation of the influence of B-cell lymphoma-2-associated athanogene 3 (BAG3) on ATC growth.

Design And Subjects: We investigated the effects of BAG3 down-modulation, obtained by using a specific small interfering RNA, on in vitro and in vivo growth of the human ATC cell line 8505C. Because BRAF protein plays an important role in ATC cell growth, we analyzed the effects of BAG3 down-modulation on BRAF protein levels. Furthermore, by using a proteasome inhibitor, we verified whether BAG3-mediated regulation of BRAF levels involved a proteasome-dependent mechanism.

Results: BAG3 down-modulation significantly inhibits ATC growth in vitro and in vivo. BAG3 coimmunoprecipitates with BRAF protein, and its down-modulation results in a significant reduction of BRAF protein levels, which can be reverted by incubation with the proteasome inhibitor MG132.

Conclusion: BAG3 protein sustains ATC growth in vitro and in vivo. The underlying molecular mechanism appears to rely on BAG3 binding to BRAF, thus protecting it from proteasome-dependent degradation. These results are in line with the reported ability of BAG3 to interfere with the proteasomal delivery of a number of other client proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1210/jc.2011-0484DOI Listing

Publication Analysis

Top Keywords

braf protein
20
bag3 down-modulation
16
vitro vivo
12
bag3
10
anaplastic thyroid
8
effects bag3
8
atc cell
8
protein levels
8
proteasome inhibitor
8
atc growth
8

Similar Publications

Background: The immunopeptidome is constantly monitored by T cells to detect foreign or aberrant HLA peptides. It is highly dynamic and reflects the current cellular state, enabling the immune system to recognize abnormal cellular conditions, such as those present in cancer cells. To precisely determine how changes in cellular processes, such as those induced by drug treatment, affect the immunopeptidome, quantitative immunopeptidomics approaches are essential.

View Article and Find Full Text PDF

Background: Rathke cleft cysts (RCCs) are benign sellar/suprasellar lesions that result from mucin-secreting vestigial remnants within the pars intermedia of the pituitary gland. When symptomatic, they can present with retro-orbital headaches, visual field defects, and/or pituitary dysfunction.

Observations: A 35-year-old female presented with subacute retro-orbital headache, right ptosis, and blurred vision.

View Article and Find Full Text PDF

Background: The combination therapy of the B-Raf proto-oncogene (BRAF) inhibitor dabrafenib and the mitogen-activated protein kinase kinase (MEK) inhibitor Trametinib has shown favorable outcomes in patients initially identified with BRAF mutations. However, there are currently no large-scale study data focusing on the use of a triple therapy regimen of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) plus dabrafenib and trametinib in patients with newly concomitant BRAF mutations after acquiring resistance to EGFR-TKIs. Our study aimed to explore the efficacy and safety of the triple therapy regimen through a multi-center real-world experience.

View Article and Find Full Text PDF

The current study established the first in vitro Encorafenib resistance protocol in BRAF-mutated malignant melanoma (MM) cells and investigated the resistance-related mechanisms. After establishing Encorafenib-resistant A375-MM cells, resistant-related mechanisms were investigated using WST-1, Annexin V, cell cycle, morphological analysis, live-cell, Western blot, RNA-Seq, transmission electron microscopy-(TEM), oxidative stress and iron colorimetric assay. The most resistant group, called A375-R, was determined in the cells treated with a constant dose of 10 nM over 3 months.

View Article and Find Full Text PDF

Protocatechuic aldehyde sensitizes BRAF-mutant melanoma cells to temozolomide through inducing FANCD2 degradation.

Med Oncol

January 2025

Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China.

Temozolomide (TMZ)-based chemotherapy is a primary regimen for melanoma patients who have failed targeted therapy or immunotherapy. However, the low response rate of TMZ-based chemotherapy challenges the patients' prognosis. BRAF mutation is the most frequently mutated site in melanoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!