Oxidative stress is closely linked to the pathogenesis of neurodegeneration. Soluble amyloid β (Aβ) oligomers cause cognitive impairment and synaptic dysfunction in Alzheimer disease (AD). However, the relationship between oligomers, oxidative stress, and their localization during disease progression is uncertain. Our previous study demonstrated that mice deficient in cytoplasmic copper/zinc superoxide dismutase (CuZn-SOD, SOD1) have features of drusen formation, a hallmark of age-related macular degeneration (Imamura, Y., Noda, S., Hashizume, K., Shinoda, K., Yamaguchi, M., Uchiyama, S., Shimizu, T., Mizushima, Y., Shirasawa, T., and Tsubota, K. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 11282-11287). Amyloid assembly has been implicated as a common mechanism of plaque and drusen formation. Here, we show that Sod1 deficiency in an amyloid precursor protein-overexpressing mouse model (AD mouse, Tg2576) accelerated Aβ oligomerization and memory impairment as compared with control AD mouse and that these phenomena were basically mediated by oxidative damage. The increased plaque and neuronal inflammation were accompanied by the generation of N(ε)-carboxymethyl lysine in advanced glycation end products, a rapid marker of oxidative damage, induced by Sod1 gene-dependent reduction. The Sod1 deletion also caused Tau phosphorylation and the lower levels of synaptophysin. Furthermore, the levels of SOD1 were significantly decreased in human AD patients rather than non-AD age-matched individuals, but mitochondrial SOD (Mn-SOD, SOD2) and extracellular SOD (CuZn-SOD, SOD3) were not. These findings suggest that cytoplasmic superoxide radical plays a critical role in the pathogenesis of AD. Activation of Sod1 may be a therapeutic strategy for the inhibition of AD progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3247976 | PMC |
http://dx.doi.org/10.1074/jbc.M111.279208 | DOI Listing |
Biology (Basel)
October 2024
College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
The yellow catfish is an economically significant freshwater fish with increasing importance in aquaculture. However, the low temperature environments prevalent in certain regions pose challenges to its growth, development, and overall health. This study aimed to explore the impact of dietary arginine (Arg) addition on the growth, digestive capacity, and intestinal antioxidant response in fish under low temperature acclimation (18 °C).
View Article and Find Full Text PDFBiomol Biomed
November 2024
Department of Pediatrics, the First Affiliated Hospital of Bengbu Medical University, Bengbu, China.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective death of motor neurons in the spinal cord, brainstem, and motor cortex. This study investigates the effects of simvastatin on the G93A-copper/zinc superoxide dismutase (G93ASOD1) transgenic mouse model of ALS. The experiment included three groups: C57BL/6 wild-type (WT) mice, C57BL/6J SOD1G93A mice treated with PBS (SOD1G93A + PBS), and C57BL/6J SOD1G93A mice treated with simvastatin (SOD1G93A + simvastatin).
View Article and Find Full Text PDFAquac Nutr
October 2024
School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China.
Manganese (Mn) is a nutritional element required for fish growth and physiology functions. In this study, we examined the effect of Mn on the intestinal digestive function, antioxidant response, and muscle quality in coho salmon (). Nine hundred salmons with initial weight approximately 0.
View Article and Find Full Text PDFAFY02 (LR-AFY02) is a newly discovered strain isolated and identified from naturally fermented yogurt in Xinjiang, China. This research aims to investigate the mechanism of action of LR-AFY02 in mice with acute gouty arthritis. We examined the degree of foot swelling, pain threshold, blood biochemical indicators, histopathological changes, and mRNA expression.
View Article and Find Full Text PDFTransl Cancer Res
October 2024
Clinical Laboratory, Chuxiong Yi Autonomous Prefecture People's Hospital, Chuxiong, China.
Background: Lung cancer is a major cause of cancer-related deaths worldwide. Unfortunately, non-small cell lung cancer (NSCLC) often lacks clear clinical symptoms and molecular markers for early diagnosis, which can hinder the initiation of timely treatments. In this study, we conducted an extensive bioinformatics analysis of copper-zinc superoxide dismutase (SOD1), a molecule linked to lung adenocarcinoma (LUAD) to enhance early detection and treatment approaches for this condition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!