Even though the blood-brain barrier (BBB) is compromised for angiogenesis, therapeutic agents for glioblastoma multiforme (GBM) are particularly inefficient due to the existence of a blood-tumor barrier (BTB), which hampers tumor accumulation and uptake. Integrin α(v)β(3) is overexpressed on glioblastoma U87 cells and neovasculture, thus making its ligands such as the RGD motif target glioblastoma in vitro and in vivo. In the present work, we have designed a modified polyethylene glycol-polyethylenimine (PEG-PEI) gene carrier by conjugating it with a cyclic RGD sequence, c(RGDyK) (cyclic arginine-glycine-aspartic acid-D-tyrosine-lysine). When complexed with plasmid DNA, this gene carrier, termed RGD-PEG-PEI, formed homogenous nanoparticles with a mean diameter of 73 nm. These nanoparticles had a high binding affinity with U87 cells and facilitated targeted gene delivery against intracranial glioblastoma in vivo, thereby leading to a higher gene transfer efficiency compared to the PEG-PEI gene carrier without RGD decoration. This intracranial glioblastoma-targeted gene carrier also enhanced the therapeutic efficacy of pORF-hTRAIL, as evidenced by a significantly prolonged survival of intracranial glioblastoma-bearing nude mice. Considering the contribution of glioblastoma neovasculature to the BBB under angiogenic conditions, our results demonstrated the therapeutic feasibility of treating a brain tumor through mediation of integrin α(v)β(3), as well as the potential of using RGD-PEG-PEI as a targeted gene carrier in the treatment of intracranial glioblastoma.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.201100570DOI Listing

Publication Analysis

Top Keywords

gene carrier
20
intracranial glioblastoma-targeted
8
gene
8
glioblastoma-targeted gene
8
gene delivery
8
integrin αvβ3
8
u87 cells
8
peg-pei gene
8
targeted gene
8
intracranial glioblastoma
8

Similar Publications

Background: Fluoropyrimidines are metabolized in the liver by the enzyme dihydropyrimidine dehydrogenase (DPD), encoded by the gene. About 7% of the European population is a carrier of gene polymorphisms associated with reduced DPD enzyme activity.

Aim: To assess the prevalence of polymorphisms and their impact on fluoropyrimidine tolerability in Italian patients with gastrointestinal malignancies.

View Article and Find Full Text PDF

Cyanobacteria are widespread, photosynthetic, gram-negative bacteria that generate numerous bioactive secondary metabolites complex biosynthetic enzymatic machinery. The model cyanobacterium sp. strain PCC 7002, hereafter referred to as PCC 7002, contains a type I polyketide synthase (PKS), termed olefin synthase (OlsWT), that synthesizes 1-nonadecene and 1,14-nonadecadiene: α-olefins that are important for growth at low temperatures.

View Article and Find Full Text PDF

Construction of a prognostic survival model with tumor immune-related genes for breast cancer.

Transl Cancer Res

December 2024

Tokyo Metropolitan Cancer and Infectious Disease Center, Komagome Hospital, Tokyo, Japan.

Background: Numerous studies have demonstrated that immune cell infiltration is a significant predictor in the prognosis of those with breast cancer. This study aimed to develop a prognostic model for undifferentiated breast cancer using immune-related markers.

Methods: Differentially expressed genes (DEGs) and prognostic factors were identified from The Cancer Genome Atlas (TCGA) database.

View Article and Find Full Text PDF

Nanotechnology has emerged as a revolutionary domain with diverse applications in medicine, and one of the noteworthy developments is the exploration of bacterial magnetosomes acquired from magnetotactic bacteria (MTB) for therapeutic purposes. The demand for natural nanomaterials in the biomedical field is continuously increasing due to their biocompatibility and eco-friendly nature. MTB produces uniform, well-ordered magnetic nanoparticles inside the magnetosomes, drawing attention due to their unique and remarkable features.

View Article and Find Full Text PDF

Streptococcus pyogenes M1UK Variant-Associated Sartorius Muscle Necrotizing Soft Tissue Infection: A Case Report and Literature Review.

Cureus

December 2024

Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, JPN.

Necrotizing soft tissue infections (NTSIs) represent a concept of necrotizing infections involving the skin, subcutaneous tissue, fascia, and muscle, and it is a potentially fatal disease. Early exploratory incision is strongly recommended for both the diagnosis and treatment of necrotizing soft tissue infections. Treatment of necrotizing soft tissue infections requires the administration of appropriate antimicrobial agents and adequate surgical debridement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!