Next-generation sequencing (NGS) is transitioning from being a research tool to being used in routine genetic diagnostics, where a major challenge is distinguishing which of many sequence variants in an individual are truly pathogenic. We describe some limitations of in silico analyses of NGS data that emphasize the need for experimental confirmation. Using NGS, we recently identified an apparently homozygous missense mutation in NUBPL in a patient with mitochondrial complex I deficiency. Causality was established via lentiviral correction studies with wild-type NUBPL cDNA. NGS data, however, provided an incomplete understanding of the genetic abnormality. We show that the maternal allele carries an unbalanced inversion, while the paternal allele carries a branch-site mutation in addition to the missense mutation. We demonstrate that the branch-site mutation, which is present in approximately one of 120 control chromosomes, likely contributes to pathogenicity and may be one of the most common autosomal mutations causing mitochondrial dysfunction. Had these analyses not been performed following NGS, the original missense mutation may be incorrectly annotated as pathogenic and a potentially common pathogenic variant not detected. It is important that locus-specific databases contain accurate information on pathogenic variation. NGS data, therefore, require rigorous experimental follow-up to confirm mutation pathogenicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/humu.21654 | DOI Listing |
BMC Genom Data
January 2025
Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
Objectives: The data were collected to obtain the complete genome sequence of Pseudarthrobacter sp. NIBRBAC000502770, isolated from the rhizosphere of Sasamorpha in a heavy metal-contaminated coal mine in Hongcheon, Republic of Korea. The objective was to explore the strain's genetic potential for plant growth promotion and heavy metal resistance, particularly arsenate and copper.
View Article and Find Full Text PDFNat Med
January 2025
Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
Genetic diagnosis of rare diseases requires accurate identification and interpretation of genomic variants. Clinical and molecular scientists from 37 expert centers across Europe created the Solve-Rare Diseases Consortium (Solve-RD) resource, encompassing clinical, pedigree and genomic rare-disease data (94.5% exomes, 5.
View Article and Find Full Text PDFObjectives: To explore the landscape of BRCA1/2 mutations in gastric cancer patients.
Methods: Next-generation sequencing (NGS), Sanger sequencing, reverse transcription quantitative polymerase chain reaction (RT-qPCR), Immunohistochemistry, The Cancer Genome Atlas (TCGA), gnomAD, and DAVID.
Results: With 95% of bases boasting a phred score surpassing 30 and a minimum coverage depth of 500X, our NGS approach ensures high-quality data acquisition.
Mol Biol Rep
January 2025
Department of Zoology, The University of Burdwan, Bardhaman, West Bengal, 713104, India.
Background: This study aimed to develop and validate a targeted next-generation sequencing (NGS) panel along with a data analysis algorithm capable of detecting single-nucleotide variants (SNVs) and copy number variations (CNVs) within the beta-globin gene cluster. The aim was to reduce the turnaround time in conventional genotyping methods and provide a rapid and comprehensive solution for prenatal diagnosis, carrier screening, and genotyping of β-thalassemia patients.
Methods And Results: We devised a targeted NGS panel spanning an 80.
Sci Rep
January 2025
Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, 13620, Korea.
Next-generation sequencing (NGS) cancer profiling has gained traction in routine clinical practice in South Korea. Here, we evaluated the use of NGS testing and genomically-matched therapies for patients with advanced solid tumors in a real-world clinical practice. We analyzed results from NGS cancer panel tests (SNUBH pan-cancer version 2) ordered from June 2019 to June 2020.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!