Methamphetamine (METH) causes partial depletion of central monoamine systems and cognitive dysfunction in rats and humans. We have previously shown and now further show that the positive correlation between expression of the immediate-early gene Arc (activity-regulated, cytoskeleton-associated) in the dorsomedial (DM) striatum and learning on a response reversal task is lost in rats with METH-induced striatal dopamine loss, despite normal behavioral performance and unaltered N-methyl-D-aspartate (NMDA) receptor-mediated excitatory post-synaptic currents, suggesting intact excitatory transmission. This discrepancy suggests that METH-pretreated rats may no longer be using the dorsal striatum to solve the reversal task. To test this hypothesis, male Sprague-Dawley rats were pretreated with a neurotoxic regimen of METH or saline. Guide cannulae were surgically implanted bilaterally into the DM striatum. Three weeks after METH treatment, rats were trained on a motor response version of a T-maze task, and then underwent reversal training. Before reversal training, the NMDA receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5) or an Arc antisense oligonucleotide was infused into the DM striatum. Acute disruption of DM striatal function by infusion of AP5 impaired reversal learning in saline-, but not METH-, pretreated rats. Likewise, acute disruption of Arc, which is implicated in consolidation of long-term memory, disrupted retention of reversal learning 24 h later in saline-, but not METH-, pretreated rats. These results highlight the critical importance of Arc in the striatum in consolidation of basal ganglia-mediated learning and suggest that long-term toxicity induced by METH alters the cognitive strategies/neural circuits used to solve tasks normally mediated by dorsal striatal function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280660 | PMC |
http://dx.doi.org/10.1038/npp.2011.265 | DOI Listing |
J Affect Disord
January 2025
Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA; Texas Biomedical Device Center (TxBDC), The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA. Electronic address:
Clinical diagnosis of anxiety disorders is highly prevalent in autism spectrum disorders (ASD). Available treatments for anxiety offer limited efficacy in the ASD population. Vagus nerve stimulation (VNS) has an anxiolytic effect in rats and, when coupled with fear extinction training, VNS enhances extinction of fear in healthy rats.
View Article and Find Full Text PDFBr J Hosp Med (Lond)
December 2024
Department of Neurology, Wuhan Brain Hospital, General Hospital of Yangtze River Shipping, Wuhan, Hubei, China.
Arterial spin labelling (ASL) is a non-invasive magnetic resonance imaging (MRI) method. ASL techniques can quantitatively measure cerebral perfusion by fitting a kinetic model to the difference between labelled images (tag images) and ones which are acquired without labelling (control images). ASL functional MRI (fMRI) provides quantitative perfusion maps by using arterial water as an endogenous tracer instead of depending on vascular blood oxygenation level.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a form of dementia in which memory and cognitive decline is thought to arise from underlying neurodegeneration. These cognitive impairments, however, are transient when they first appear and can fluctuate across disease progression. Here, we investigate the neural mechanisms underlying fluctuations of performance in amnestic mice.
View Article and Find Full Text PDFBehav Brain Res
January 2025
Department of Psychology, University of Otago, Dunedin 9016, New Zealand.
Maternal immune activation (MIA) is a risk factor for schizophrenia. Since memory for sequence and stimulus order are disrupted in individuals with schizophrenia, we tested whether MIA animals showed deficits in a sequence learning and object-place recency memory task. In experiment one, control and MIA-challenged rats were required to nose poke five ports in a cued sequence.
View Article and Find Full Text PDFSci Rep
January 2025
International Joint Research Laboratory for Perception Data Intelligent Processing of Henan, Anyang Normal University, Anyang, 455000, China.
Deconvoluting drug targets is crucial in modern drug development, yet both traditional and artificial intelligence (AI)-driven methods face challenges in terms of completeness, accuracy, and efficiency. Identifying drug targets, especially within complex systems such as the p53 pathway, remains a formidable task. The regulation of this pathway by myriad stress signals and regulatory elements adds layers of complexity to the discovery of effective p53 pathway activators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!