Optical absorption and excitonic coupling in azobenzenes forming self-assembled monolayers: a study based on density functional theory.

Phys Chem Chem Phys

Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany.

Published: December 2011

Based on the analysis of optical absorption spectra, it has recently been speculated that the excitonic coupling between individual azobenzene-functionalized alkanethiols arranged in a self-assembled monolayer (SAM) on a gold surface could be strong enough to hinder collective trans-cis isomerization-on top of steric hindrance [Gahl et al., J. Am. Chem. Soc., 2010, 132, 1831]. Using models of SAMs of increasing complexity (dimer, linear N-mers, and two-dimensionally arranged N-mers) and density functional theory on the (TD-) B3LYP/6-31G* level, we determine optical absorption spectra, the nature and magnitude of excitonic couplings, and the corresponding spectral shifts. It is found that at inter-monomer distances of about 20 Å and above, TD-B3LYP excitation frequencies (and signal intensities) can be well described by the frequently used point-dipole approximation. Further, calculated blue shifts in optical absorption spectra account for the experimental observations made for azobenzene/gold SAMs, and hint to the fact that they can indeed be responsible for reduced switching probability in densely packed self-assembled structures.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1cp22793aDOI Listing

Publication Analysis

Top Keywords

optical absorption
16
absorption spectra
12
excitonic coupling
8
density functional
8
functional theory
8
optical
4
absorption excitonic
4
coupling azobenzenes
4
azobenzenes forming
4
forming self-assembled
4

Similar Publications

Adding colour to ion-selective membranes.

Talanta

January 2025

Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland. Electronic address:

An idea of using ion-exchanger salt containing optically active cations to prepare ion-selective membranes is proposed. Although the presence of an ion-exchanger in the composition of neutral ionophore based sensors is necessary, the choice of available salts for cation-selective sensors preparation, is usually limited to sodium or potassium compounds. In this work we propose application of an alternative salt, using a cation optically active both in absorption and emission mode as a mobile one.

View Article and Find Full Text PDF

Currently, the development of red Mn-activated fluoride luminescent materials attracts a lot of attention in optical thermometry sensors, solid lighting, display, and plant growth areas. Nevertheless, the thermal stability of Mn-activated fluoride luminescent materials is still a crucial issue. Herein, a new red RbNaVF:Mn luminescent material with outstanding thermal stability was successfully synthesized through the facial coprecipitation method.

View Article and Find Full Text PDF

Co-assemblies of Silver Nanoclusters and Fullerenols With Enhanced Third-Order Nonlinear Optical Response.

Small Methods

January 2025

National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

Exploring potential third-order nonlinear optical (NLO) materials attracts ever-increasing attention. Given that the atomically precise and rich adjustable structural features of silver nanoclusters (Ag NCs), as well as the unique π-electron conjugated system of carbon-based nanomaterials, a supramolecular co-assembly amplification strategy to enhance the luminescent intensity and NLO performance of the hybrids of the two components, are constructed and the relationship between structures and optical properties are investigated. By combining water soluble Ag NCs [(NH)[Ag(mna)] (Hmna = 2-mercaptonicotinic acid, abbreviated to Ag─NCs hereafter) containing uncoordinated carboxyl groups with water-soluble fullerene derivatives modified with multiple hydroxyl groups (fullerenols, C─OH), the π-electron delocalization is expanded owing to non-covalent hydrogen bonding effect between Ag6─NCs and C─OH, which provides a feasible basis for realizing the NLO response.

View Article and Find Full Text PDF

In biomedical research, telemetry is used to take automated physiological measurements wirelessly from animals, as it reduces their stress and allows recordings for large data collection over long periods. The ability to transmit high-throughput data from an in-body device (e.g.

View Article and Find Full Text PDF

Recent Advances in the Tunable Optoelectromagnetic Properties of PEDOTs.

Molecules

January 2025

Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA.

Conducting polymers represent a crucial class of functional materials with widespread applications in diverse fields. Among these, poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives have garnered significant attention due to their distinctive optical, electronic, and magnetic properties, as well as their exceptional tunability. These properties often exhibit intricate interdependencies, manifesting as synergistic, concomitant, or antagonistic relationships.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!