A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of laser diode thermal desorption (LDTD) coupled with tandem mass spectrometry (MS/MS) for support of in vitro drug discovery assays: increasing scope, robustness and throughput of the LDTD technique for use with chemically diverse compound libraries. | LitMetric

Within the drug discovery environment, the key process in optimising the chemistry of a structural series toward a potential drug candidate is the design, make and test cycle, in which the primary screens consist of a number of in vitro assays, including metabolic stability, cytochrome P450 inhibition, and time-dependent inhibition assays. These assays are often carried out using multiple drug compounds with chemically diverse structural features, often in a 96 well-plate format for maximum time-efficiency, and are supported using rapid liquid chromatographic (LC) sample introduction with a tandem mass spectrometry (MS/MS) selected reaction monitoring (SRM) endpoint, taking around 6.5 h per plate. To provide a faster time-to-decision at this critical point, there exists a requirement for higher sample throughput and a robust, well-characterized analytical alternative. This paper presents a detailed evaluation of laser diode thermal desorption (LDTD), a relatively new ambient sample ionization technique, for compound screening assays. By systematic modification of typical LDTD instrumentation and workflow, and providing deeper understanding around overcoming a number of key issues, this work establishes LDTD as a practical, rapid alternative to conventional LC-MS/MS in drug discovery, without need for extensive sample preparation or expensive, scope-limiting internal standards. Analysis of both the five and three cytochrome P450 competitive inhibition assay samples by LDTD gave improved sample throughput (0.75 h per plate) and provided comparable data quality as the IC₅₀ values obtained were within 3 fold of those calculated from the LC-MS/MS data. Additionally when applied generically to a chemically diverse library of over 250 proprietary compounds from the AstraZeneca design, make and test cycle, LDTD demonstrated a success rate of 98%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2011.10.014DOI Listing

Publication Analysis

Top Keywords

drug discovery
12
chemically diverse
12
evaluation laser
8
laser diode
8
diode thermal
8
thermal desorption
8
desorption ldtd
8
tandem mass
8
mass spectrometry
8
spectrometry ms/ms
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!